×

zbMATH — the first resource for mathematics

Periodic boxcar deconvolution and Diophantine approximation. (English) Zbl 1056.62044
Summary: We consider the nonparametric estimation of a periodic function that is observed in additive Gaussian white noise after convolution with a “boxcar,” the indicator function of an interval. This is an idealized model for the problem of recovery of noisy signals and images observed with “motion blur.” If the length of the boxcar is rational, then certain frequencies are irretreviably lost in the periodic model.
We consider the rate of convergence of estimators when the length of the boxcar is irrational, using classical results on approximation of irrationals by continued fractions. A basic question of interest is whether the minimax rate of convergence is slower than for nonperiodic problems with \(1/f\)-like convolution filters. The answer turns out to depend on the type and smoothness of functions being estimated in a manner not seen with “homogeneous” filters.

MSC:
62G05 Nonparametric estimation
62M99 Inference from stochastic processes
11K60 Diophantine approximation in probabilistic number theory
62M40 Random fields; image analysis
62G20 Asymptotic properties of nonparametric inference
65R32 Numerical methods for inverse problems for integral equations
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Belitser, E. and Levit, B. (1995). On minimax filtering over ellipsoids. Math. Methods Statist. 4 259–273. · Zbl 0836.62070
[2] Bertero, M. and Boccacci, P. (1998). Introduction to Inverse Problems in Imaging . Institute of Physics, Bristol. · Zbl 0914.65060
[3] Cavalier, L., Golubev, G. K., Picard, D. and Tsybakov, A. B. (2002). Oracle inequalities for inverse problems. Ann. Statist. 30 843–874. · Zbl 1029.62032
[4] Cavalier, L. and Tsybakov, A. B. (2002). Sharp adaptation for inverse problems with random noise. Probab. Theory Related Fields 123 323–354. · Zbl 1039.62031
[5] Donoho, D. L. (1995). Nonlinear solution of linear inverse problems by wavelet-vaguelette decomposition. Appl. Comput. Harmon. Anal. 2 101–126. · Zbl 0826.65117
[6] Donoho, D. L., Liu, R. C. and MacGibbon, K. B. (1990). Minimax risk over hyperrectangles, and implications. Ann. Statist. 18 1416–1437. JSTOR: · Zbl 0705.62018
[7] Evans, S. N. and Stark, P. B. (2002). Inverse problems as statistics. Inverse Problems 18 R55–R97. · Zbl 1039.62007
[8] Golubev, G. K. and Khas’minskiĭ, R. Z. (1999). A statistical approach to some inverse problems for partial differential equations. Problemy Peredachi Informatsii 35 51–66. · Zbl 0947.35174
[9] Golubev, G. and Khasminskii, R. (2001). A statistical approach to the Cauchy problem for the Laplace equation. In State of the Art in Probability and Statistics: Festschrift for Willem R. van Zwet 419–433. IMS, Beachwood, OH. · Zbl 1373.62129
[10] Groeneboom, P. and Jongbloed, G. (2003). Density estimation in the uniform deconvolution model. Statist. Neerlandica 57 136–157. · Zbl 1090.62527
[11] Hall, P., Ruymgaart, F., van Gaans, O. and van Rooij, A. (2001). Inverting noisy integral equations using wavelet expansions: A class of irregular convolutions. In State of the Art in Probability and Statistics: Festschrift for Willem R. van Zwet 533–546. IMS, Beachwood, OH. · Zbl 1371.42042
[12] Johnstone, I. M. (2003). Function estimation and Gaussian sequence models. Draft of a monograph. Available at www-stat.stanford.edu/ imj.
[13] Johnstone, I. M., Kerkyacharian, G., Picard, D. and Raimondo, M. (2004). Wavelet deconvolution in a periodic setting (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 66 547–573, 627–652. · Zbl 1046.62039
[14] Johnstone, I. M. and Silverman, B. (1990). Speed of estimation in positron emission tomography and related inverse problems. Ann. Statist. 18 251–280. JSTOR: · Zbl 0699.62043
[15] Khinchin, A. Y. (1992). Continued Fractions . Dover, New York. · Zbl 0117.28601
[16] Koo, J.-Y. (1993). Optimal rates of convergence for nonparametric statistical inverse problems. Ann. Statist. 21 590–599. JSTOR: · Zbl 0778.62040
[17] Korostelev, A. and Tsybakov, A. (1993). Minimax Theory of Image Reconstruction. Lecture Notes in Statist. 82 . Springer, New York. · Zbl 0833.62039
[18] Kress, R. (1999). Linear Integral Equations , 2nd ed. Springer, New York. · Zbl 0920.45001
[19] Lang, S. (1966). Introduction to Diophantine Approximations . Addison–Wesley, Reading, MA. · Zbl 0144.04005
[20] Mair, B. and Ruymgaart, F. H. (1996). Statistical inverse estimation in Hilbert scales. SIAM J. Appl. Math. 56 1424–1444. JSTOR: · Zbl 0864.62020
[21] Mathé, P. and Pereverzev, S. V. (2001). Optimal discretization of inverse problems in Hilbert scales. Regularization and self-regularization of projection methods. SIAM J. Numer. Anal. 38 1999–2021 (electronic). JSTOR: · Zbl 1049.65046
[22] O’Sullivan, F. and Roy Choudhury, K. (2001). An analysis of the role of positivity and mixture model constraints in Poisson deconvolution problems. J. Comput. Graph. Statist. 10 673–696. JSTOR: · Zbl 04570738
[23] Pinsker, M. (1980). Optimal filtering of square integrable signals in Gaussian white noise. Problems Inform. Transmission 16 120–133. · Zbl 0452.94003
[24] Schmidt, W. (1980). Diophantine Approximation . Lecture Notes in Math. 785 . Springer, Berlin. · Zbl 0421.10019
[25] Tenorio, L. (2001). Statistical regularization of inverse problems. SIAM Rev. 43 347–366 (electronic). JSTOR: · Zbl 0976.65114
[26] Wahba, G. (1990). Spline Models for Observational Data . SIAM, Philadelphia. · Zbl 0813.62001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.