Nordman, Daniel J.; Lahiri, Soumendra N. On optimal spatial subsample size for variance estimation. (English) Zbl 1056.62055 Ann. Stat. 32, No. 5, 1981-2027 (2004). Summary: We consider the problem of determining the optimal block (or subsample) size for a spatial subsampling method for spatial processes observed on regular grids. We derive expansions for the mean square error of the subsampling variance estimator which yields an expression for the theoretically optimal block size. The optimal block size is shown to depend in an intricate way on the geometry of the spatial sampling region as well is characteristics of the underlying random field.Final expressions for the optimal block size make use of some nontrivial estimates of lattice point counts in shifts of convex sets. Optimal block sizes are computed for sampling regions of a number of commonly encountered shapes. Numerical studies are performed to compare subsampling methods as well as procedures for estimating the theoretically best block size. Cited in 16 Documents MSC: 62G09 Nonparametric statistical resampling methods 62M30 Inference from spatial processes 62M40 Random fields; image analysis 60G60 Random fields Keywords:block bootstrap; block size; lattice point count; variance estimation; spatial statistics; subsampling method Software:AS 312; spatial × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Billingsley, P. (1986). Probability and Measure , 2nd ed. Wiley, New York. · Zbl 0649.60001 [2] Bolthausen, E. (1982). On the central limit theorem for stationary mixing random fields. Ann. Probab. 10 1047–1050. JSTOR: · Zbl 0496.60020 · doi:10.1214/aop/1176993726 [3] Bradley, R. C. (1989). A caution on mixing conditions for random fields. Statist. Probab. Lett. 8 489–491. · Zbl 0697.60054 · doi:10.1016/0167-7152(89)90032-1 [4] Bühlmann, P. and Künsch, H. R. (1999). Block length selection in the bootstrap for time series. Comput. Statist. Data Anal. 31 295–310. · Zbl 1061.62528 · doi:10.1016/S0167-9473(99)00014-6 [5] Carlstein, E. (1986). The use of subseries values for estimating the variance of a general statistic from a stationary time series. Ann. Statist. 14 1171–1179. JSTOR: · Zbl 0602.62029 · doi:10.1214/aos/1176350057 [6] Chan, G. and Wood, A. T. A. (1997). Algorithm AS 312: An algorithm for simulating stationary Gaussian random fields. Appl. Statist. 46 171–181. · Zbl 0913.65142 · doi:10.1111/1467-9876.00057 [7] Cressie, N. (1991). Statistics for Spatial Data . Wiley, New York. · Zbl 0799.62002 [8] Doukhan, P. (1994). Mixing : Properties and Examples . Lecture Notes in Statist. 85 . Springer, New York. · Zbl 0801.60027 [9] Fukuchi, J.-I. (1999). Subsampling and model selection in time series analysis. Biometrika 86 591–604. · Zbl 0949.62076 · doi:10.1093/biomet/86.3.591 [10] Garcia-Soidan, P. H. and Hall, P. (1997). On sample reuse methods for spatial data. Biometrics 53 273–281. · Zbl 0874.62106 · doi:10.2307/2533113 [11] Guyon, X. (1995). Random Fields on a Network : Modelling , Statistics and Applications . Springer, New York. · Zbl 0839.60003 [12] Hall, P. (1992). The Bootstrap and Edgeworth Expansion . Springer, New York. · Zbl 0744.62026 [13] Hall, P., Horowitz, J. L. and Jing, B.-Y. (1995). On blocking rules for the bootstrap with dependent data. Biometrika 82 561–574. · Zbl 0830.62082 · doi:10.1093/biomet/82.3.561 [14] Hall, P. and Jing, B.-Y. (1996). On sample reuse methods for dependent data. J. Roy. Statist. Soc. Ser. B 58 727–737. · Zbl 0860.62037 [15] Huxley, M. N. (1993). Exponential sums and lattice points. II. Proc. London Math. Soc. (3) 66 279–301. · Zbl 0820.11060 · doi:10.1112/plms/s3-66.2.279 [16] Huxley, M. N. (1996). Area , Lattice Points , and Exponential Sums . Oxford Univ. Press, New York. · Zbl 0861.11002 [17] Krätzel, E. (1988). Lattice Points . Deutscher Verlag Wiss., Berlin. · Zbl 0675.10031 [18] Künsch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann. Statist. 17 1217–1241. JSTOR: · Zbl 0684.62035 · doi:10.1214/aos/1176347265 [19] Lahiri, S. N. (1996). On empirical choice of the optimal block size for block bootstrap methods. Preprint, Dept. Statistics, Iowa State Univ. [20] Lahiri, S. N. (1999a). Asymptotic distribution of the empirical spatial cumulative distribution function predictor and prediction bands based on a subsampling method. Probab. Theory Related Fields 114 55–84. · Zbl 0951.62013 · doi:10.1007/s004400050221 [21] Lahiri, S. N. (1999b). Theoretical comparisons of block bootstrap methods. Ann. Statist. 27 386–404. · Zbl 0945.62049 · doi:10.1214/aos/1018031117 [22] Lahiri, S. N. (2004). Central limit theorems for weighted sums of a spatial process under a class of stochastic and fixed designs. Sankhyā . [23] Lahiri, S. N., Furukawa, K. and Lee, Y.-D. (2003). A nonparametric plug-in rule for selecting optimal block lengths for block bootstrap methods. Preprint, Dept. Statistics, Iowa State Univ. · Zbl 1248.62060 · doi:10.1016/j.stamet.2006.08.002 [24] Léger, C., Politis, D. N. and Romano, J. P. (1992). Bootstrap technology and applications. Technometrics 34 378–399. · Zbl 0850.62367 · doi:10.2307/1268938 [25] Martin, R. J. (1990). The use of time-series models and methods in the analysis of agricultural field trials. Comm. Statist. Theory Methods 19 55–81. [26] Meketon, M. S. and Schmeiser, B. (1984). Overlapping batch means: Something for nothing? In Proc. 16th Conference on Winter Simulation Conf. (S. Sheppard, U. Pooch and D. Pegden, eds.) 227–230. IEEE, Piscataway, NJ. [27] Nordman, D. J. (2002). On optimal spatial subsample size for variance estimation. Ph.D. dissertation, Dept. Statistics, Iowa State Univ. · Zbl 1056.62055 [28] Nordman, D. J. and Lahiri, S. N. (2002). On the approximation of differenced lattice point counts with application to statistical bias expansions. Preprint, Dept. Statistics, Iowa State Univ. [29] Nordman, D. J. and Lahiri, S. N. (2003). On optimal variance estimation under different spatial subsampling schemes. In Recent Advances and Trends in Nonparametric Statistics (M. G. Akritas and D. N. Politis, eds.). North-Holland, Amsterdam. · doi:10.1016/B978-044451378-6/50028-4 [30] Perera, G. (1997). Geometry of \(\mathbbZ^d\) and the central limit theorem for weakly dependent random fields. J. Theoret. Probab. 10 581–603. · Zbl 0884.60022 · doi:10.1023/A:1022693309359 [31] Politis, D. N. and Romano, J. P. (1993a). Nonparametric resampling for homogeneous strong mixing random fields. J. Multivariate Anal. 47 301–328. · Zbl 0795.62087 · doi:10.1006/jmva.1993.1085 [32] Politis, D. N. and Romano, J. P. (1993b). On the sample variance of linear statistics derived from mixing sequences. Stochastic Process. Appl. 45 155–167. · Zbl 0765.62085 · doi:10.1016/0304-4149(93)90066-D [33] Politis, D. N. and Romano, J. P. (1994). Large sample confidence regions based on subsamples under minimal assumptions. Ann. Statist. 22 2031–2050. JSTOR: · Zbl 0828.62044 · doi:10.1214/aos/1176325770 [34] Politis, D. N. and Romano, J. P. (1995). Bias-corrected nonparametric spectral estimation. J. Time Ser. Anal. 16 67–103. · Zbl 0811.62088 · doi:10.1111/j.1467-9892.1995.tb00223.x [35] Politis, D. N., Romano, J. P. and Wolf, M. (1999). Subsampling . Springer, New York. · Zbl 0931.62035 [36] Politis, D. N. and Sherman, M. (2001). Moment estimation for statistics from marked point processes. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 261–275. · Zbl 0979.62074 · doi:10.1111/1467-9868.00284 [37] Possolo, A. (1991). Subsampling a random field. In Spatial Statistics and Imaging (A. Possolo, ed.) 286–294. IMS, Hayward, CA. · Zbl 0768.62091 [38] Ripley, B. D. (1981). Spatial Statistics . Wiley, New York. · Zbl 0583.62087 [39] Sherman, M. (1996). Variance estimation for statistics computed from spatial lattice data. J. Roy. Statist. Soc. Ser. B 58 509–523. · Zbl 0855.62082 [40] Sherman, M. and Carlstein, E. (1994). Nonparametric estimation of the moments of a general statistic computed from spatial data. J. Amer. Statist. Assoc. 89 496–500. · Zbl 0798.62047 · doi:10.2307/2290851 [41] van der Corput, J. G. (1920). Über Gitterpunkte in der Ebene. Math. Ann. 81 1–20. · JFM 47.0159.01 · doi:10.1007/BF01563613 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.