×

An adaptation theory for nonparametric confidence intervals. (English) Zbl 1056.62060

From the paper: The problem of estimating a linear functional occupies a central position in nonparametric function estimation. It is most complete in the Gaussian settings: \[ dY(t)=f(t)dt+n^{-1/2}dW(t),\quad -1/2\leq t\leq 1/2, \] where \(W(t)\) is standard Brownian motion and \[ Y(i)=f(i)+n^{-1/2}z_i, \quad i\in{\mathcal M}, \] where \(z_i\) are i.i.d. standard normal random variables and \({\mathcal M}\) is a finite or countably infinite index set. Confidence sets also play a fundamental role in statistical inference. In the context of nonparametric function estimation variable size confidence intervals, bands and balls have received particular attention recently. For any confidence set there are two main interrelated issues which need to be considered together, coverage probability and the expected size of the confidence set.
Here, a nonparametric adaptation theory is developed for the construction of confidence intervals for linear functionals. A between class modulus of continuity captures the expected length of adaptive confidence intervals. Sharp lower bounds are given for the expected length and an ordered modulus of continuity is used to construct adaptive confidence procedures which are within a constant factor of the lower bounds. In addition, minimax theory over nonconvex parameter spaces is developed.

MSC:

62G15 Nonparametric tolerance and confidence regions
62C20 Minimax procedures in statistical decision theory
62F35 Robustness and adaptive procedures (parametric inference)
62M99 Inference from stochastic processes

References:

[1] Abramovich, F., Benjamini, Y., Donoho, D. and Johnstone, I. (2000). Adapting to unknown sparsity by controlling the false discovery rate. Technical Report 2000-19, Dept. Statistics, Stanford Univ. · Zbl 1092.62005
[2] Baraud, Y. (2002). Non-asymptotic minimax rates of testing in signal detection. Bernoulli 8 577–606. · Zbl 1007.62042
[3] Beran, R. and Dümbgen, L. (1998). Modulation of estimators and confidence sets. Ann. Statist. 26 1826–1856. · Zbl 1073.62538 · doi:10.1214/aos/1024691359
[4] Brown, L. D. and Low, M. G. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384–2398. · Zbl 0867.62022 · doi:10.1214/aos/1032181159
[5] Cai, T. and Low, M. (2002). On modulus of continuity and adaptability in nonparametric functional estimation. Technical report, Dept. Statistics, Univ. Pennsylvania.
[6] Cai, T. and Low, M. (2003). Adaptive estimation and confidence intervals for convex functions and monotone functions. Technical report, Dept. Statistics, Univ. Pennsylvania.
[7] Cai, T. and Low, M. (2004). Minimax estimation of linear functionals over nonconvex parameter spaces. Ann. Statist. 32 552–576. · Zbl 1048.62054 · doi:10.1214/009053604000000094
[8] Donoho, D. L. (1994). Statistical estimation and optimal recovery. Ann. Statist. 22 238–270. JSTOR: · Zbl 0805.62014 · doi:10.1214/aos/1176325367
[9] Donoho, D. L., Johnstone, I. M., Hoch, J. C. and Stern, A. S. (1992). Maximum entropy and the nearly black object (with discussion). J. Roy. Statist. Soc. Ser. B. 54 41–81. · Zbl 0788.62103
[10] Donoho, D. L. and Liu, R. C. (1987). Geometrizing rates of convergence. I. Technical Report 137, Dept. Statistics, Univ. California, Berkeley. · Zbl 0754.62028
[11] Donoho, D. L. and Liu, R. C. (1991). Geometrizing rates of convergence. III. Ann. Statist. 19 668–701. · Zbl 0754.62029 · doi:10.1214/aos/1176348115
[12] Dudley, R. (1999). Uniform Central Limit Theorems . Cambridge Univ. Press. · Zbl 0951.60033 · doi:10.1017/CBO9780511665622
[13] Dümbgen, L. (1998). New goodness-of-fit tests and their application to nonparametric confidence sets. Ann. Statist. 26 288–314. · Zbl 0930.62034 · doi:10.1214/aos/1030563987
[14] Feller, W. (1968). An Introduction to Probability Theory and Its Applications 1 , 3rd ed. Wiley, New York. · Zbl 0155.23101
[15] Genovese, C. R. and Wasserman, L. (2002). Confidence sets for nonparametric wavelet regression. Technical report, Dept. Statistics, Carnegie Mellon Univ. · Zbl 1068.62057
[16] Hall, P. (1992). Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann. Statist. 20 675–694. JSTOR: · Zbl 0748.62028 · doi:10.1214/aos/1176348651
[17] Ha\"rdle, W. and Marron, J. S. (1991). Bootstrap simultaneous error bars for nonparametric regression. Ann. Statist. 19 778–796. JSTOR: · Zbl 0725.62037 · doi:10.1214/aos/1176348120
[18] Hengartner, N. W. and Stark, P. B. (1995). Finite-sample confidence envelopes for shape-restricted densities. Ann. Statist. 23 525–550. JSTOR: · Zbl 0828.62043 · doi:10.1214/aos/1176324534
[19] Ibragimov, I. A. and Hasminskii, R. Z. (1984). Nonparametric estimation of the value of a linear functional in Gaussian white noise. Theory Probab. Appl. 29 18–32. · Zbl 0575.62076 · doi:10.1137/1129002
[20] Li, K.-C. (1989). Honest confidence regions for nonparametric regression. Ann. Statist. 17 1001–1008. JSTOR: · Zbl 0681.62047 · doi:10.1214/aos/1176347253
[21] Low, M. G. (1995). Bias-variance tradeoffs in functional estimation problems. Ann. Statist. 23 824–835. JSTOR: · Zbl 0838.62006 · doi:10.1214/aos/1176324624
[22] Low, M. G. (1997). On nonparametric confidence intervals. Ann. Statist. 25 2547–2554. · Zbl 0894.62055 · doi:10.1214/aos/1030741084
[23] Picard, D. and Tribouley, K. (2000). Adaptive confidence interval for pointwise curve estimation. Ann. Statist. 28 298–335. · Zbl 1106.62331 · doi:10.1214/aos/1016120374
[24] Pratt, J. W. (1961). Length of confidence intervals. J. Amer. Statist. Assoc. 56 549–567. · Zbl 0099.14002 · doi:10.2307/2282079
[25] Stark, P. B. (1992). Affine minimax confidence intervals for a bounded normal mean. Statist. Probab. Lett. 13 39–44.
[26] Zeytinoglu, M. and Mintz, M. (1984). Optimal fixed size confidence procedures for a restricted parameter space. Ann. Statist. 12 945–957. JSTOR: · Zbl 0562.62032 · doi:10.1214/aos/1176346713
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.