×

Inverse radial deformations and cavitation in finite compressible elasticity. (English) Zbl 1056.74009

Using Shield’s inverse theorem, the author finds new families of solutions describing spherical inflation for isotropic, homogeneous, compressible elasticity. Cavitation is shown to be possible for each of the solutions, and each family shares a common simple mathematical description of the cavitation. Moreover, some features of the cavitation solutions are explored.

MSC:

74B20 Nonlinear elasticity
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] 1 Gent, A. N., and Lindley, P. B.: Internal rupture of bonded rubber cylinders in tension . Proc. R. Soc. London, 249, 195-205 (1958). · doi:10.1098/rspa.1959.0016
[2] 2 Ball, J. M.: Discontinuous equilibrium solutions and cavitation in nonlinear elasticity . Phil. Trans. R. Soc. London A, 306, 557-610 (1982). · Zbl 0513.73020 · doi:10.1098/rsta.1982.0095
[3] 3 Horgan, C. O., and Polignone, D. A.: Cavitation in nonlinearly elastic solids: a review . Appl. Mech. Rev., 48, 471-485 (1995). · doi:10.1115/1.3005108
[4] 4 Ericksen, J. L.: Deformations possible in every compressible, isotropic, perfectly elastic material . J. Math. Phys., 34, 126-128 (1955). · Zbl 0064.42105 · doi:10.1002/sapm1955341126
[5] 5 Carroll, M. M.: Finite strain solutions in compressible isotropic elasticity . J. Elasticity, 20, 65-92 (1988). · Zbl 0654.73030 · doi:10.1007/BF00042141
[6] 6 Murphy, J. G.: Some new closed-form solutions describing inflation in compressible finite elasticity . IMA J. Appl. Math., 48, 305-316 (1992). · Zbl 0759.73021 · doi:10.1093/imamat/48.3.305
[7] 7 Horgan, C. O.: Void nucleation and growth for compressible non-linearly elastic materials: an example . Int. J. Solids Struct., 29, 279-291 (1992). · Zbl 0755.73026 · doi:10.1016/0020-7683(92)90200-D
[8] 8 Shield, R. T.: Inverse deformation results in finite compressible elasticity . ZAMP, 18, 490-500 (1967). · Zbl 0146.46103 · doi:10.1007/BF01601719
[9] 9 Horgan, C. O., and Abeyaratne, R.: A bifurcation problem for a compressible nonlinear elastic medium: growth of a micro-void . J. Elasticity, 16, 189-200 (1986). · Zbl 0585.73017 · doi:10.1007/BF00043585
[10] 10 Shang, X.C., and Cheng, C.J.: Exact solution for cavitated bifurcation for compressible hyperelastic materials . Int. J. Eng. Sci., 39, 1101-1117 (2001). · Zbl 1210.74025 · doi:10.1016/S0020-7225(00)00090-2
[11] 12 Horgan, C. O.: On axisymmetric solutions for compressible nonlinearly elastic solids . ZAMP, 46, 107-125 (1995). · Zbl 0836.73013 · doi:10.1007/978-3-0348-9229-2_6
[12] 13 Murphy, J. G.: Strain energy functions for a Poisson power law function in simple tension of compressible hyperelastic materials . J. Elasticity, 60, 151-164 (2000). · Zbl 1001.74013 · doi:10.1023/A:1010843015909
[13] 14 Haughton, D. M.: Inflation and bifurcation of thick-walled compressible elastic spherical shells . IMA J. Appl. Math., 39, 259-272 (1987). · Zbl 0649.73021 · doi:10.1093/imamat/39.3.259
[14] 15 Abeyaratne, R., and Horgan, C. O.: The hollow sphere problem in finite elastostatics for a class of compressible materials . Int. J. Solids Struct., 20, 715-723 (1984). · Zbl 0546.73033 · doi:10.1016/0020-7683(84)90060-X
[15] 16 Sensenig, C. B.: Instability of thick elastic solids . Commun. Pure Appl. Math., 17, 451-491 (1964). · Zbl 0127.15001 · doi:10.1002/cpa.3160170406
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.