zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Heat transfer over an unsteady stretching surface with internal heat generation. (English) Zbl 1056.76026
Summary: We study heat transfer over an unsteady stretching surface with internal heat generation or absorption. The governing time-dependent boundary layer equations are solved numerically. The velocity profiles, temperature profiles, the skin friction components on the unsteady stretching surface and the rate of heat transfer are computed and discussed in detail for various values of unsteadiness parameter, Prandtl number and heat source/sink parameter.

76D10Boundary-layer theory, separation and reattachment, etc. (incompressible viscous fluids)
76M20Finite difference methods (fluid mechanics)
80A20Heat and mass transfer, heat flow
Full Text: DOI
[1] Sakiadis, B. C.: Aiche J.. 7, No. 1, 26-28 (1961)
[2] Sakiadis, B. C.: Aiche J.. 7, No. 1, 221-225 (1961)
[3] Tsou, F. K.; Sparrow, E. M.; Goldstein, R. J.: Int. J. Heat mass transfer. 10, 219-235 (1967)
[4] Crane, L. J.: Z. angew. Math. phys.. 21, 645-647 (1970)
[5] Vleggaar, J.: Chem. eng. Sci.. 32, 1517-1525 (1977)
[6] Gupta, P. S.; Gupta, A. S.: Can. J. Chem. eng.. 55, No. 6, 744-746 (1977)
[7] Soundalgekar, V. M.; Ramana, T. V.: Warme-und stoffubertragung. 14, 91-93 (1980)
[8] Grubka, L. J.; Bobba, K. M.: J. heat transfer. 107, 248-250 (1985)
[9] Ali, M. E.: Warme-und stoffubertragung. 29, 227-234 (1994)
[10] Banks, W. H. H: J. mec. Theor. appl.. 2, 375-392 (1983)
[11] Ali, M. E.: Int. J. Heat mass flow. 16, 280-290 (1995)
[12] Elbashbeshy, E. M. A: J. phys. D. 31, 1951-1955 (1998)
[13] Elbashbeshy, E. M. A; Bazid, M. A. A: Int. J. Heat mass transfer. 43, 3087-3092 (2000) · Zbl 0952.76550
[14] Elbashbeshy, E. M. A; Bazid, M. A. A: J. phys. D. 33, 2716-2721 (2000)
[15] Elbashbeshy, E. M. A: Can. J. Phys.. 78, 1107-1112 (1988)
[16] Abo-Eldahab, E. M.; El-Gendy, M. S.: Physica scripta. 62, 321-325 (2000)