zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear system fault diagnosis based on adaptive estimation. (English) Zbl 1056.93034
Summary: An approach to fault diagnosis for a class of nonlinear systems is proposed in this paper. It is based on a new adaptive estimation algorithm for recursive estimation of the parameters related to faults. This algorithm is designed in a constructive manner through a nontrivial combination of a high gain observer and a recently developed linear adaptive observer, without resort to any linearization. Its global exponential convergence is ensured by an easy-to-check persistent excitation condition. A numerical example is presented for illustration.

93B51Design techniques in systems theory
93E10Estimation and detection in stochastic control
93C10Nonlinear control systems
90B25Reliability, availability, maintenance, inspection, etc. (optimization)
Full Text: DOI
[1] Basseville, M., & Nikiforov, I. (1993). Detection of abrupt changes--theory and applications. Information and system sciences series. Englewood Cliffs, NJ: Prentice-Hall.
[2] Bastin, G.; Gevers, M.: Stable adaptive observers for nonlinear time varying systems. IEEE transactions on automatic control 33, No. 7, 650-658 (1988) · Zbl 0676.93037
[3] Besançon, G.: Remarks on nonlinear adaptive observer design. Systems and control letters 41, No. 4, 271-280 (2000)
[4] Besançon, G., & Zhang, Q. (2002). Further developments on adaptive observers for nonlinear systems with application in fault detection. In 15th IFAC world congress, Barcelona.
[5] Busvelle, E., & Gauthier, J.-P. (2001). High-gain and non-high-gain observers for nonlinear systems. In A. Anzaldo-Meneses, B. Bonnard, J.-P. Gauthier, & F. Monroy-Perez (Eds.), Contemporary trends in non-linear geometric control theory and its applications. Singapore: World Scientific Publishing Co. · Zbl 1175.93047
[6] Chen, J.; Patton, R. J.: Robust model-based fault diagnosis for dynamic systems. (1999) · Zbl 0920.93001
[7] Cho, Y. M.; Rajamani, R.: A systematic approach to adaptive observer synthesis for nonlinear systems. IEEE transactions on automatic control 42, No. 4, 534-537 (1997) · Zbl 0873.93049
[8] Contois, D.: Kinetics of bacteria growth relationship between population density and specific growth rate of continuous cultures. Journal of genetic macrobiology 21, 40-50 (1959)
[9] Depersis, C.; Isidori, A.: A geometric approach to nonlinear fault detection and isolation. IEEE transactions on automatic control 46, No. 6, 853-865 (2001) · Zbl 1009.93003
[10] Deza, F. (1991). Contribution à la synthèse d’observateurs exponentiels--application à un procédé industriel. Ph.D. thesis, Institut National des Sciences Appliquées de Rouen, Rouen, France. (in French).
[11] Ding, X., & Frank, P. M. (1993). An adaptive observer-based fault detection scheme for nonlinear dynamic systems. In Proceedings of the IFAC world congress’93, Vol. 8, Sydney (pp. 307-311).
[12] Frank, P. M.: Fault diagnosis in dynamic systems using analytical and knowledge based redundancy--a survey and new results. Automatica 26, 459-474 (1990) · Zbl 0713.93052
[13] Gauthier, J. -P.; Hammouri, H.; Othman, S.: A simple observer for nonlinear systems, application to bioreactors. IEEE transactions on automatic control 37, No. 6, 875-880 (1992) · Zbl 0775.93020
[14] Gauthier, J. -P.; Kupka, I. A. K.: Observability and observers for nonlinear systems. SIAM journal on control and optimization 32, No. 4, 975-994 (1994) · Zbl 0802.93008
[15] Gauthier, J. -P.; Kupka, I.: Deterministic observation theory and applications. (2001) · Zbl 0990.93001
[16] Gertler, J. J.: Fault detection and diagnosis in engineering systems. (1998)
[17] Guernez, C., Cassar, J. P., & Staroswiecki, M. (1997). Extension of parity space to nonlinear polynomial dynamic systems. In Proceedings of Safeprocess’97, Hull, UK.
[18] Hammouri, H.; Kabore, P.; Kinnaert, M.: A geometric approach to fault detection and isolation for bilinear systems. IEEE transactions on automatic control 46, No. 9, 1451-1455 (2000) · Zbl 1006.93014
[19] Hammouri, H.; Kinnaert, M.; El Yaagoubi, E. H.: Observer-based approach to fault detection and isolation for nonlinear systems. IEEE transactions on automatic control 44, No. 10, 1879-1884 (1998) · Zbl 0956.93005
[20] Hou, M.; Busawon, K.; Saif, M.: Observer design based on triangular form generated by injective map. IEEE transactions on automatic control 45, No. 7, 1350-1355 (2000) · Zbl 0991.93018
[21] Jazwinski, A. H. (1970). Stochastic processes and filtering theory. Mathematics in Science and Engineering, Vol. 64, New York: Academic Press. · Zbl 0203.50101
[22] Kailath, T. (1980). Linear systems. Information and system sciences series. Englewood Cliffs, NJ: Prentice-Hall. · Zbl 0454.93001
[23] Kreisselmeier, G.: Adaptive observers with exponential rate of convergence. IEEE transactions on automatic control 22, No. 1, 2-8 (1977) · Zbl 0346.93043
[24] Lüders, G.; Narendra, K. S.: An adaptive observer and identifier for a linear system. IEEE transactions on automatic control 18, 496-499 (1973) · Zbl 0266.93029
[25] Marino, R.; Tomei, P.: Adaptive observers with arbitrary exponential rate of convergence for nonlinear systems. IEEE transactions on automatic control 40, No. 7, 1300-1304 (1995) · Zbl 0832.93009
[26] Marino, R., & Tomei, P. (1995b). Nonlinear control design. Information and system sciences, London, New York: Prentice-Hall. · Zbl 0833.93003
[27] Martinez, J. C.; Poznyak, A. S.: Switching structure state and parameter estimator for MIMO non-linear robust control. International journal of control 74, No. 2, 175-189 (2001) · Zbl 1013.93013
[28] Poznyak, A. S.; Martinez, J. C.: Variable structure robust state and parameter estimator. International journal of adaptive control and signal processing 15, No. 4, 179-208 (2001) · Zbl 0988.93009
[29] Rajamani, R.; Hedrick, K.: Adaptive observer for active automotive suspensions--theory and experiment. IEEE transactions on control systems technology 3, No. 1, 86-93 (1995)
[30] Wang, H.; Huang, Z. J.; Daley, S.: On the use of adaptive updating rules for actuator and sensor fault diagnosis. Automatica 33, No. 2, 217-225 (1997) · Zbl 0874.93058
[31] Willsky, A. S.: A survey of design methods for failure detection in dynamic systems. Automatica 12, 601-611 (1976) · Zbl 0345.93067
[32] Xu, A. (2002). Observateurs adaptatifs non-linéaires et diagnostic de pannes. Ph.D. thesis, Université de Rennes 1, Rennes, France (in French).
[33] Xu, A., & Zhang, Q. (2002). Fault detection and isolation based on adaptive observers for linear time varying systems. In IFAC world congress, Barcelona.
[34] Yang, H., & Saif, M. (1995). Nonlinear adaptive observer design for fault detection. In Proceedings of ACC’95, Seattle (pp. 1136-1139).
[35] Zhang, Q.: A new residual generation and evaluation method for detection and isolation of faults in nonlinear systems. International journal of adaptive control and signal processing 14, 759-773 (2000) · Zbl 0974.93012
[36] Zhang, Q.: Adaptive observer for multiple-input-multiple-output (MIMO) linear time varying systems. IEEE transactions on automatic control 47, No. 3, 525-529 (2002)
[37] Zhang, Q.; Basseville, M.; Benveniste, A.: Fault detection and isolation in nonlinear dynamic systemsa combined input-output and local approach. Automatica 34, No. 11, 1359-1373 (1998) · Zbl 0961.93007
[38] Zhang, Q., & Xu, A. (2001a). Global adaptive observer for a class of nonlinear systems. In CDC’2001, Orlando, USA.
[39] Zhang, Q., & Xu, A. (2001b). Implicit adaptive observers for a class of nonlinear systems. In ACC’2001, Arlington (pp. 1551-1556).
[40] Zhang, Q., Xu, A., & Besançon, G. (2003). An efficient nonlinear adaptive observer with global convergence. In 13th IFAC/IFORS symposium on system identification (SYSID), Rotterdam (pp. 1737-1742).