zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Output-feedback $\Cal H_\infty$ control of systems over communication networks using a deterministic switching system approach. (English) Zbl 1056.93527
Summary: This paper proposes a new control problem of systems over asymmetric path-delay configurations on arbitrary communication networks, where the criterion is the $\Cal H_\infty$ norm minimization via dynamic output-feedback controllers. Network-delay-dependent switching controllers are designed via a piecewise Lyapunov function approach as well as a common Lyapunov function approach. The controllers are found through convex optimization over linear matrix inequalities.

90B18Communication networks (optimization)
Full Text: DOI
[1] Boukas, E. K.; Liu, Z. K.: Robust H$\infty $control of discrete-time Markovian jump linear systems with mode-dependent time-delays. IEEE transactions on automatic control 46, No. 12, 1918-1924 (2001) · Zbl 1005.93050
[2] Boyd, S., Ghaoui, L., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory, Vol. 15. Philadelphia, PA: SIAM. · Zbl 0816.93004
[3] Chan, H., & Özgüner, Ü. (1995). Optimal control of systems over a communication network with queues via a jump system approach. Proceedings of the IEEE conference on control applications (pp. 1148-1152).
[4] Chizeck, H. J.; Willsky, A. S.; Castanon, D.: Discrete-time Markovian-jump linear quadratic optimal control. International journal of control 43, No. 1, 213-231 (1986) · Zbl 0591.93067
[5] Costa, O. L. V.; Fragoso, M. D.: Stability results for discrete-time linear system with Markovian jumping parameters. Journal of mathematical analysis and applications 179, 154-178 (1993) · Zbl 0790.93108
[6] Ji, Y.; Chizeck, H. J.: Jump linear quadratic Gaussian controlsteady-state solution and testable conditions. Control theory and advanced technology 6, No. 3, 289-319 (1990)
[7] Kolmanovsky, I., & Maizenberg, T. L. (2001). Linear quadratic optimal control of continuous-time linear systems with random delays. Proceedings ACC (pp. 101-106). · Zbl 0986.93075
[8] Krtolica, R.; Özgüner, Ü.; Chan, H.; Göktas, H.; Winkelman, J.; Liubakka, M.: Stability of linear feedback systems with random communication delays. International journal of control 59, No. 4, 925-953 (1994) · Zbl 0812.93073
[9] Özgüner, Ü. (1989). Problems in implementing distributed control. Proceedings ACC (pp. 274-279).
[10] Xiao, L., Hassibi, A., & How, J. P. (2000). Control with random communication delays via a discrete-time jump system approach. Proceedings ACC (2199-2204).