×

Groups of intermediate subgroup growth and a problem of Grothendieck. (English) Zbl 1057.20019

Let \(f\) be a function such that for every \(\varepsilon>0\), \(n^{\log n}\leq f(n)\leq n^{\varepsilon n}\) holds if \(n\) is sufficiently large. Suppose that \(\log f(n)/\log n\) is nondecreasing. For every such \(f\) the author constructs a 4-generator group \(G\) such that \(s_n(G)\), the number of subgroups of index at most \(n\) in \(G\), grows like \(f(n)\).
The author proves that there exist continuously many nonisomorphic 4-generator residually finite groups with isomorphic profinite completions. Also it is shown that there exist continuously many finitely generated residually finite groups \(G\) such that for some subgroup \(G_0\) the continuous homomorphism \(\widehat i\colon\widehat G_0\to\widehat G\) induced by the inclusion map \(i\) is an isomorphism of profinite completions, but \(G_0\not\cong G\).

MSC:

20E07 Subgroup theorems; subgroup growth
20E18 Limits, profinite groups
20E26 Residual properties and generalizations; residually finite groups
20F05 Generators, relations, and presentations of groups
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] L. Babai and Á. Seress, On the diameter of permutation groups , European J. Combin. 13 (1992), 231–243. · Zbl 0783.20001
[2] H. Bass and A. Lubotzky, Nonarithmetic superrigid groups: Counterexamples to Platonov’s conjecture , Ann. of Math. (2) 151 (2000), 1151–1173. JSTOR: · Zbl 0963.22005
[3] J. D. Dixon and B. Mortimer, Permutation Groups , Grad. Texts in Math. 163 , Springer, New York, 1996. · Zbl 0951.20001
[4] R. I. Grigorchuk, On the Milnor problem of group growth (in Russian), Dokl. Akad. Nauk SSSR 271 , no. 1 (1983), 30–33.; English translation in Soviet Math. Dokl. 28 , no. 1 (1983), 23–26. · Zbl 0547.20025
[5] –. –. –. –., Degrees of growth of finitely generated groups and the theory of invariant means (in Russian) , Izv. Akad. Nauk SSSR Ser. Math. 48 , no. 5 (1984), 939–985.; English translation in Math. USSR-Izv. 25 , no. 5 (1985), 259–300.
[6] –. –. –. –., “On growth in group theory” in Proceedings of the International Congress of Mathematicians, Vols. I, II (Kyoto, 1991; Tokyo, 1991) , Math. Soc. Japan, Tokyo, 1990, 325–338. · Zbl 0715.42015
[7] A. Grothendieck, Représentations linéaires et compactification profinie des groupes discrets , Manuscripta Math. 2 (1970), 375–396. · Zbl 0239.20065
[8] M. Hall, Subgroups of finite index in free groups , Canad. J. Math. 1 (1949), 187–190. · Zbl 0031.34001
[9] V. C. Harris and M. V. Subbarao, On product partitions of integers , Canad. Math. Bull. 34 (1991), 474–479. · Zbl 0785.11047
[10] G. Higman, A finitely generated infinite simple group , J. London Math. Soc. 26 (1951), 61–64. · Zbl 0042.02201
[11] W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group , Geom. Dedicata 36 (1990), 67–87. · Zbl 0718.20011
[12] P. B. Kleidman and M. W. Liebeck, The Subgroup Structure of the Finite Classical Groups , London Math. Soc. Lecture Note Ser. 129 , Cambridge Univ. Press, Cambridge, 1990. · Zbl 0697.20004
[13] A. Lubotzky, “Counting finite index subgroups” in Groups ’93 Galway/St. Andrews, Vol. 2 , London Math. Soc. Lecture Notes Ser. 212 , Cambridge Univ. Press, Cambridge, 1995, 368–404. · Zbl 0862.20020
[14] –. –. –. –., “Subgroup growth” in Proceedings of the International Congress of Mathematicians, Vols. 1,2 (Zürich, 1994) , Birkhäuser, Basel, 1995, 309–317. · Zbl 0857.20013
[15] –. –. –. –., Subgroup growth and congruence subgroups , Invent. Math. 119 (1995), 267–295. · Zbl 0848.20036
[16] A. Lubotzky, A. Mann, and D. Segal, Finitely generated groups of polynomial subgroup growth , Israel J. Math. 82 (1993), 363–371. · Zbl 0811.20027
[17] A. Lubotzky, L. Pyber, and A. Shalev, Discrete groups of slow subgroup growth , Israel J. Math. 96 (1996), 399–418. · Zbl 0877.20019
[18] A. Lubotzky and D. Segal, Subgroup Growth , Progr. Math. 212 , Birkhäuser, Basel, 2003.
[19] A. Mann and D. Segal, “Subgroup growth: Some current developments” in Infinite Groups (Ravello, Italy, 1994) , de Gruyter, Berlin, 1995, 179–197. · Zbl 0867.20023
[20] T. Müller, Finite group actions and asymptotic expansion of \(e^P(z)\) , Combinatorica 17 (1997), 523–554. · Zbl 0906.05002
[21] B. H. Neumann, Some remarks on infinite groups , J. London Math. Soc. 12 (1937), 120–127. · Zbl 0016.29501
[22] P. F. Pickel, Metabelian groups with the same finite quotients , Bull. Austral. Math. Soc. 11 (1974), 115–120. · Zbl 0279.20025
[23] V. P. Platonov and O. I. Tavgen, On the Grothendieck problem of profinite completions of groups , Soviet Math. Dokl. 33 , no. 3 (1986), 822–825. · Zbl 0614.20016
[24] L. Pyber and A. Shalev, Groups with super-exponential subgroup growth , Combinatorica 16 (1996), 527–533. · Zbl 0880.20019
[25] L. Ribes and P. Zalesskii, Profinite Groups , Ergeb. Math. Grenzgeb. 40 , Springer, Berlin, 2000. · Zbl 0949.20017
[26] D. Segal, The finite images of finitely generated groups , Proc. London Math. Soc. (3) 82 (2001), 597–613. · Zbl 1022.20011
[27] D. Segal and A. Shalev, Groups with fractionally exponential subgroup growth , J. Pure Appl. Algebra 88 (1993), 205–223. · Zbl 0832.20053
[28] A. Shalev, Groups whose subgroup growth is less than linear , Internat. J. Algebra Comput. 7 (1997), 77–91. · Zbl 0876.20017
[29] M. Suzuki, Group Theory, I , Grundlehren Math. Wiss. 247 , Springer, Berlin, 1982.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.