zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos synchronization of Lü dynamical system. (English) Zbl 1057.34042
The author considers the Lü system: $\dot x = a(y-x)$, $\dot y = -xz+cy$, $\dot z = xy - bz$, where $a$, $b$, and $c$ are positive parameters. Sufficient conditions are given for the synchronization of two such systems. Different coupling configurations are considered: master-slave configuration $\dot u_1 = f(u_1)$, $\dot u_2 = f(u_2) +k(u_1-u_2)$, direct substitution, and adaptive control.

MSC:
34D05Asymptotic stability of ODE
34C28Complex behavior, chaotic systems (ODE)
WorldCat.org
Full Text: DOI
References:
[1] Agiza, H. N.; Yassen, M. T.: Synchronization of two Rössler and Chen chaotic dynamical systems using active control. Phys. lett. A 278, 191-197 (2001) · Zbl 0972.37019
[2] Bai, E. W.; Lonngren, K. E.: Sequential synchronization of two Lorenz system using active control. Chaos solitons fractals 11, 1041-1044 (2000) · Zbl 0985.37106
[3] Carroll, T. L.; Pecora, L. M.: Synchronization chaotic systems. IEEE trans. Circuits syst. 38, 453-456 (1991)
[4] G. Chen, T. Ueta, Yet another chaotic attractor, Int. J. Bifur. Chaos 9 (1999) 1465--1466. · Zbl 0962.37013
[5] Chen, S.; Lü, J.: Synchronization of an uncertain unified chaotic system via adaptive control. Chaos solitons fractals 14, 643-647 (2002) · Zbl 1005.93020
[6] Cuomo, K. M.; Oppenheim, A. V.: Circuit implementation of synchronized chaos with applications to communications. Phys. rev. Lett. 71, 65-68 (1993)
[7] Hegazi, A. S.; Agiza, H. N.; El-Dessoky, M.: Adaptive synchronization for Rössler and Chua’s circuit systems. Int. J. Bifur. chaos 12, No. 7, 1579-1597 (2002) · Zbl 1047.34060
[8] Itoh, M.; Wu, C.; Chua, L.: Communication systems via chaotic signals from a reconstruction viewpoint. Int. J. Bifur. chaos 7, 275-286 (1997) · Zbl 0890.94007
[9] T. Kapitaniak, Controlling Chaos: Theoretical and Practical Methods in Nonlinear Dynamics, Academic Press, London, 1996. · Zbl 0883.58021
[10] Kocarev, L.; Parlitz, U.: General approach for chaotic synchronization with applications to communications. Phys. rev. Lett. 74, 5028-5031 (1995)
[11] Li, Z.; Han, C.; Shi, S.: Modification for synchronization of Rössler and Chen chaotic systems. Phys. lett. A 301, 224-230 (2002) · Zbl 0997.37014
[12] T. Liao, Adaptive synchronization of chaotic systems and its application to secure communications, Chaos Solitons Fractals 11 (1998) 1387--1396. · Zbl 0967.93059
[13] T. Liao, S. Lin, Adaptive control and sychronization of Lorenz systems, J. Franklin Institute 336 (1999) 925--937. · Zbl 1051.93514
[14] Lorenz, E. N.: Deterministic non-periodic flows. J. atoms sci. 20, 130-141 (1963)
[15] Lu, J.; Chen, G.; Zhang, S.: A new chaotic attractor coined. Int. J. Bifur. chaos 12, 1001-1015 (2002) · Zbl 1044.37021
[16] Lu, J.; Chen, G.; Zhang, S.: The compound structure of a new chaotic attractor. Chaos solitons fractals 14, 669-672 (2002) · Zbl 1067.37042
[17] Lü, J.; Zhou, T.; Zhang, S.: Chaos synchronization between linearly coupled chaotic systems. Chaos solitons fractals 14, 529-541 (2002) · Zbl 1067.37043
[18] K. Murali, M. Lakshmanan, Chaos in nonlinear oscilators controlling and synchronization, World Scientific, Singapore, 1996. · Zbl 0868.58058
[19] Pecora, L. M.; Carroll, T. L.: Synchronization of chaotic systems. Phys. rev. Lett. 64, No. 8, 821-830 (1990) · Zbl 0938.37019
[20] Wang, W.; Guan, Z.; Wang, H.: Feedback and adaptive control for the synchronization of Chen system via a single variable. Phys. lett. A 312, 40-43 (2003) · Zbl 1024.37053