Brandolese, Lorenzo Asymptotic behavior of the energy and pointwise estimates for solutions to the Navier-Stokes equations. (English) Zbl 1057.35026 Rev. Mat. Iberoam. 20, No. 1, 223-256 (2004). The aim of the paper is to construct, in any dimension \(n\geq 2\), a class of solutions of the Navier-Stokes equations such that the energy norm decays at infinity larger than \(t^{-(n+2)/4}\). To this end the author studies the large time behaviour of the energy of a class of Navier-Stokes flows with special symmetries in the initial data which are preserved in the solution. In particular, initial data is considered where the components of the initial velocity vector can be obtained one from the other by rotating the space variables. Reviewer: Uwe Kähler (Aveiro) Cited in 24 Documents MSC: 35Q30 Navier-Stokes equations 35B40 Asymptotic behavior of solutions to PDEs 76D05 Navier-Stokes equations for incompressible viscous fluids Keywords:Navier-Stokes equations; energy estimates; symmetric weak solutions; large time behaviour PDF BibTeX XML Cite \textit{L. Brandolese}, Rev. Mat. Iberoam. 20, No. 1, 223--256 (2004; Zbl 1057.35026) Full Text: DOI EuDML References: [1] Amrouche, C., Girault, V., Schonbek, M. E. and Schonbek, T. P.: Pointwise decay of solutions and of higher derivatives to Navier-Stokes equations. SIAM J. Math. Anal. 31 (2000), no. 4, 740-753. · Zbl 0986.35085 [2] Bergh, J., Löfsrt\? om, J.: Interpolation spaces. An Introduction. Springer-Verlag, Berlin-Heidelberg-New York, 1976. · Zbl 0344.46071 [3] Brandolese, L.: On the localization of symmetric and asymmetric solu- tions of the Navier-Stokes equations in Rn. C. R. Acad. Sci. Paris Sér. I Mat. 332 (2001), 125-130. · Zbl 0973.35149 [4] Brandolese, L.: Spacetime decay of Navier-Stokes flows invariant under rotations. To appear in Math. Ann. · Zbl 1080.35062 [5] Brandolese, L., Meyer, Y.: On the instantaneous spreading for the Navier-Stokes system in the whole space. ESAIM Control Optim. Calc. Var. 8 (2002), 273-285. · Zbl 1080.35063 [6] Cannone, M.: Ondelettes, paraproduits et Navier-Stokes. Diderot Éditeur, Paris, 1995. · Zbl 1049.35517 [7] Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math 35 (1982), 771-831. · Zbl 0509.35067 [8] Dobrokhotov, S. Y., Shafarevich, A. I.: Some integral identities and remarks on the decay at infinity of solutions of the Navier-Stokes equations in the entire espace. Russian J. Math. Phys. 2 (1994), no. 1, 133-135. · Zbl 0976.35508 [9] Frazier, M., Jawerth, B., Weiss, G.: The Littlewood-Paley theory and the study of function spaces. CBMS Regional Conference Series in Mathematics 79. American Mathematical Society, Providence, 1991. · Zbl 0757.42006 [10] Fujigaki, Y., Miyakawa, T.: Asymptotic profiles of non stationary in- compressible Navier-Stokes flows in the whole space. SIAM J. Math. Anal. 33 (2001), 523-544. 255 · Zbl 0995.35046 [11] Fujigaki, Y., Miyakawa, T.: On solutions with fast decay of non- stationary Navier-Stokes equations. In Nonlinear problems in Mathe- matical Physics and related topics I, 91-120. Int. Math. Ser. (N. Y.) 1. Kluwer/Plenum, New York, 2002. [12] Fushchych, W., Popowych, R.: Symmetry reduction and exact solu- tions of the Navier-Stokes equations, part I and II. J. Nonlinear Math. Phys. 1 (1994), no. 1, 75-113 and 1 (1994), no. 2, 158-188. · Zbl 0956.35099 [13] Gallay, T., Wayne, C. E.: Invariant manifolds and the long-time asymp- totics of the Navier-Stokes and vorticity equations on R2. Arch. Ration. Mech. Anal. 163 (2002), 209-258. · Zbl 1042.37058 [14] Gallay, T., Wayne, C. E.: Long-time asymptotics of the Navier-Stokes and vorticity equations on R3. Roy. Soc. Lond. Philos. Ser. A Math. Phys. Eng. Sci. 360 (2002), 2155-2188. · Zbl 1048.35055 [15] Hanks, R.: Interpolation by the real method between BMO, L\alpha (0 < \alpha < \infty ), and H\alpha (0 < \alpha < \infty ). Indiana Univ. Math. J. 26 (1977), no. 4, 679-689. · Zbl 0361.46022 [16] He, C., Xin, Z.: On the decay properties of Solutions to the nonstationary Navier-Stokes equations in R3, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), no. 3, 597-619. · Zbl 0982.35083 [17] Kato, T.: Strong Lp-solutions of the Navier-Stokes equations in Rm, with applications to weak solutions. Math. Z. 187 (1984), 471-480. · Zbl 0545.35073 [18] Kida, S.: Three-Dimensional Periodic Flows with High-Symmetry. J. Phys. Soc. Japan 54 (1985), no. 6, 2132-2136. [19] Kajikiya, R., Miyakawa, T.: On L2 decay of weak solutions of the Navier-Stokes equations in Rn. Math Z. 192 (1986), 135-148. · Zbl 0607.35072 [20] Ladyzenskaija, O.: The mathematical theory of viscous incompressible flow. Gordon and Breach, New York, English translation, 2nd ed., 1969. · Zbl 0184.52603 [21] Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934), 193-248. · JFM 60.0726.05 [22] Masuda, K.: Weak solutions of the Navier-Stokes equations. T\hat ohoku Math. J. (2) 36 (1984), 623-646. · Zbl 0568.35077 [23] Meyer, Y.: Ondelettes et opérateurs I. Hermann, Paris, 1990. · Zbl 0694.41037 [24] Meyer, Y.: Wavelets, paraproducts and Navier-Stokes equations. Cur- rent developements in Mathematics, 1996. Internat. Press, Cambridge, MA 02238-2872, 1999. [25] Miyakawa, T.: Application of Hardy space techniques to the time-decay problem for incompressible Navier-Stokes flows in Rn. Funkcial. Ekvac. 41 (1998), 383-434. · Zbl 1142.35544 [26] Miyakawa, T.: On space time decay properties of nonstationary incom- pressible Navier-Stokes flows in Rn. Funkcial. Ekvac. 32 (2000), 541-557. · Zbl 1142.35545 [27] Miyakawa, T.: Notes on space-time decay properties of nonstationary incompressible Navier-Stokes flows in Rn. Funkcial. Ekvac. 45 (2002), no. 2, 271-289. · Zbl 1141.35434 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.