Romera, M.; Pastor, G.; Álvarez, G.; Montoya, F. Shrubs in the Mandelbrot set ordering. (English) Zbl 1057.37048 Int. J. Bifurcation Chaos Appl. Sci. Eng. 13, No. 8, 2279-2300 (2003). Summary: We introduce shrubs in this paper in order to present a first approach to studying the structure of the Mandelbrot set. Primary, secondary\(\dots\)and \(N\)-ary shrubs are analyzed. We have experimentally obtained formulae to calculate the periods of the hyperbolic component representatives of the structural branches, and the preperiods and periods of both the nodes – where structural branches emanate – and the tips – where the shrub enters in crisis. A generalization allows us to give in each case one formula to calculate representative periods and preperiods and periods of nodes and tips. Cited in 5 Documents MSC: 37F45 Holomorphic families of dynamical systems; the Mandelbrot set; bifurcations (MSC2010) Keywords:Mandelbrot set; hyperbolic components; Misiurewicz points PDF BibTeX XML Cite \textit{M. Romera} et al., Int. J. Bifurcation Chaos Appl. Sci. Eng. 13, No. 8, 2279--2300 (2003; Zbl 1057.37048) Full Text: DOI OpenURL References: [1] DOI: 10.1016/S0167-2789(98)00243-7 · Zbl 0988.37060 [2] DOI: 10.1090/psapm/039/1010237 [3] DOI: 10.1142/9789814415712_0008 [4] DOI: 10.1142/S0218348X95000564 · Zbl 0929.37016 [5] Douady A., Publ. Math. d’Orsay, 85-04 pp 56– [6] A. Douady, Chaotic Dynamics and Fractals, eds. M. Barnsley and S. G. Demko (Academic Press, NY, 1986) pp. 155–168. [7] Gilbert E. N., Illinois J. Math. 5 pp 657– [8] DOI: 10.1103/PhysRevLett.48.1507 [9] DOI: 10.1016/0378-4371(93)90342-2 [10] DOI: 10.1007/BFb0103999 · Zbl 0970.37032 [11] DOI: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2 · Zbl 1417.37129 [12] DOI: 10.1016/0375-9601(93)90011-N [13] B. B. Mandelbrot, Nonlinear Dynamics, ed. R. H. G. Helleman (Annals of the New York Academy of Sciences, NY, 1980) pp. 249–259. [14] DOI: 10.1016/0167-2789(83)90128-8 · Zbl 1194.30028 [15] DOI: 10.1038/261459a0 · Zbl 1369.37088 [16] DOI: 10.1016/0097-3165(73)90033-2 · Zbl 0259.26003 [17] J. Milnor, Computers in Geometry and Topology, Lecture Notes in Pure and Applied Mathematics 114, ed. Tangora (Dekker, 1989) pp. 211–257. [18] Milnor J., Asterisque 261 pp 277– [19] Misiurewicz M., Mem. Am. Math. Soc. 94 pp 1– [20] Myrberg P. J., Ann. Acad. Sci. Fenn.-M. 336 pp 1– [21] DOI: 10.1016/0960-0779(95)00071-2 · Zbl 1080.37562 [22] DOI: 10.1016/0378-4371(96)00128-8 [23] DOI: 10.1103/PhysRevE.56.1476 [24] DOI: 10.1016/S0378-4371(98)00083-1 [25] DOI: 10.1016/S0378-4371(00)00586-0 · Zbl 0972.37038 [26] DOI: 10.1007/978-3-642-61717-1 [27] DOI: 10.1016/0378-4371(96)00127-6 [28] DOI: 10.1103/PhysRevE.58.7214 [29] DOI: 10.1007/BF01646553 · Zbl 0223.76041 [30] Sharkovsky A. N., Ukrain. Mat. Zhurn. 16 pp 61– [31] DOI: 10.1007/978-94-011-1763-0 [32] DOI: 10.1016/0378-4371(92)90081-Z · Zbl 0776.58025 [33] DOI: 10.1016/0378-4371(94)90227-5 [34] DOI: 10.1016/0378-4371(94)90176-7 · Zbl 0808.58024 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.