zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Poles and alternation points in real rational Chebyshev approximation. (English) Zbl 1057.41008
The concept of alternation sets is well known in the theory of best polynomial approximation and the extension to real rational approximation has been studied extensively. Let $f\in C[-1,1]$ be real valued and let ${\cal R}_{n,m}$ denote the set of rational functions of the form $r=p/q$, where $q\not\equiv 0$ and $p$ and $q$ are polynomials of degrees at most $n$ and $m$ respectively. For each pair $(n,m)$ of nonnegative integers there then exists a unique function $r^{\ast}_{n,m}\in{\cal R}_{n,m}$ that satsfies $$ \| f-r^{\ast}_{n,m}\| <\| f-r\| \text{ for all }r\in{\cal R}_{n,m}, r\not= r^{\ast}_{n,m}, $$ where $\| \cdot \| $ is the sup-norm on $C[-1,1]$. Write $r^{\ast}_{n,m}=p^{\ast}_n/ q^{\ast}_m$, with numerator and denominator having no common factors, and define the {\it defect} by $$ d_{n,m}=\min\{n-\deg p^{\ast}_n, m-\deg q^{\ast}_m\}. $$ Then there exist $\delta=m+n+2-d_{n,m}$ points $x_k^{(n,m)}$ on the closed interval $[-1,1]$ $$ -1\leq x_1^{(n,m)}<\cdots <x_{\delta}^{(n,m)}\leq 1 $$ satisfying $$ \lambda_{n,m}(-1)^k(f-r^{\ast}_{n,m}) (x_k^{(n,m)})=\| f-r^{\ast}_{n,m}\| ,\quad 1\leq k\leq \delta, $$ where $\lambda_{n,m}=\pm 1$, fixed; this is called an alternation set (in general not unique). For the sequel, let for each pair $(n,m)$ an arbitrary, fixed alternation set for the best approximation to $f$ be given by $$ A_{n,m}=A_{n,m}(f):= \{x_k^{(n,m)}\}_{k=1}^{\delta}. $$ In the paper of {\it P. B. Borwein}, {\it A. Króo}, {\it R. Grothmann}, {\it E. B. Saff}, Proc. Am. Math. Soc. 105, No.4, 881-888 (1989; Zbl 0688.41018)], it is shown that a subsequence of alternation sets is dense in $[-1,1]$ whenever $n/m\rightarrow\kappa,\ \kappa>1$. In “Behavior of alternation points in best rational approximation”, [Acta Appl. Math. 33, No.2-3, 195-210 (1993; Zbl 0801.41021)], the connection between denseness and the number of poles of $r^{\ast}_{n,m}$ that lie outside an $\varepsilon$-neighborhood of $[-1,1]$ is studied. In the paper under review the main result now is a new theorem that implies (amongst others) many of the results found in the papers quoted above. Let $f$ be a nonrational function and let $n,m(n)$ satisfy $$ m(n)\leq n,m(n)\leq m(n+1)\leq m(n)+1. $$ Then there exists a subsequence $\Lambda\subset\text{\bf N}$ such that $$ \nu_n-\alpha_n\widehat{\tau}_n-(1-\alpha_n) \mu\overset\to{\ast\atop \rightarrow} 0 \text{ as }n\rightarrow\infty,n\in\Lambda $$ in the weak$^{\ast}$ topology; here $$ \alpha_n={\ell_n\over \delta}, $$ and $$ \nu_n(A):={\#\{x_k^{(n)} : x_k^{(n)}\in A\}\over \delta} $$ the normalized counting measure. Furthermore if $y_1,\ldots,y_{\ell}$ are the zeros of the polynomial $Q_n(z)=q^{\ast}_{m(n)} q^{\ast}_{m(n+1)}$ of degree $\ell$, then $$ \tau_n(A)={\#\{y_i : y_i\in A\} \over \ell_n} $$ (the normalized counting measure of all poles of $r^{\ast}_n,r^{\ast}_{n+1}$), and the function $\widehat{\tau}$ is introduced using the logarithmic potential of $\nu$. A clearly written and interesting paper.

41A20Approximation by rational functions
41A50Best approximation, Chebyshev systems
Full Text: DOI
[1] V. V. Andrievskii and H.-P. Blatt, Discrepancy of Signed Measures and Polynomial Approximation, Springer, New York, 2002. · Zbl 0995.30001
[2] L. Baratchart, E. B. Saff and F. Wielonsky, Rational interpolation of the exponential function, Can. J. Math. 47 6 (1995), 1121--1147. · Zbl 0852.41013 · doi:10.4153/CJM-1995-058-6
[3] H.-P. Blatt, On the distribution of simple zeros of polynomials, J. Appr. Theory 69 (1992), 250--268. · Zbl 0757.41011 · doi:10.1016/0021-9045(92)90002-6
[4] H.-P. Blatt and R. Grothmann, Erdos-Turán theorems on a system of Jordan curves and arcs, Constr. Appr. 7 (1991), 19--47. · Zbl 0764.30003 · doi:10.1007/BF01888145
[5] H.-P. Blatt, R. Grothmann, and R. K. Kovacheva, On the distribution of alternation points in uniform rational approximation, C. R. Acad. Bulg. Sci. 55 8 (2002), 5--10. · Zbl 1014.41006
[6] H.-P. Blatt, R. Grothmann, and R. K. Kovacheva, Discrepancy estimates and rational Chebyshev approximation, in: B. D. Bojanov (ed.), Constructive Theory of Functions, Proceedings of the international conference, Varna Bulgaria, June 19--23, 2002, Sofia: DARBA (2003), 213--218. · Zbl 1014.41006
[7] P. B. Borwein, A. Kroó, R. Grothmann and E. B. Saff, The density of alternation points in rational approximation, Proc. Amer. Math. Soc. 105 (1989), 881--888. · Zbl 0688.41018 · doi:10.1090/S0002-9939-1989-0948147-0
[8] D. Braess, D. S. Lubinsky and E. B. Saff, Behavior of alternation points in best rational aproximation, Acta Appl. Math. 33 2-3 (1993), 195--210. · Zbl 0801.41021 · doi:10.1007/BF00995488
[9] M. I. Kadec, On the distribution of points of maximal deviation in the approximation of continuous functions by polynomials, Uspekhi Mat. Nauk 15 (1960), 199--202.
[10] A. Kroó and F. Peherstorfer, On the asymptotic distribution of oscillation points in rational approximation, Anal. Math. 19 (1993), 225--232. · Zbl 0791.41018 · doi:10.1007/BF02074000
[11] E.B. Saff and V. Totik, Logarithmic Potentials with External Fields, Springer Verlag, Heidelberg, 1997. · Zbl 0881.31001