Nagel, Alexander; Stein, Elias M. On the product theory of singular integrals. (English) Zbl 1057.42016 Rev. Mat. Iberoam. 20, No. 2, 531-561 (2004); corrigenda ibid. 21, No. 2, 693-694 (2005). Let \(1<p<\infty\). In this nice paper, the authors establish \(L^p\)-boundedness for a class of product singular integral operators on product spaces \(\widetilde{M}=M_1\times M_2\times\cdots \times M_n\). Each factor space \(M_i\) is a smooth manifold on which the basic geometry is given by a control, or Carnot-Carathéodory, metric induced by a collection of vector fields of finite type. In particular, the authors focus their attention on the following two specific settings:(A) Here \(M_i\) is a compact connected \(C^\infty\)-manifold. Suppose that \(k\) smooth real vector fields \(\{X_1,\,\cdots,\,X_k\}\) on \(M_i\) are given, which are of finite-type \(m\) in the sense that these vector fields together with their commutators of order \(\leq m\) span the tangent space to \(M_i\) at each point.(B) Here \(M_i\) arises as the boundary of an unbounded model polynomial domain in \({\mathbb C}^2\). Then, let \(\Omega=\{(z,\,w)\in{\mathbb C}^2| \,\text{ Im}[w]>P(z)\}\), where \(P\) is a real, subharmonic, non-harmonic polynomial of degree \(m\). Then \(M_i=\partial\Omega\) can be identified with \({\mathbb C}\times {\mathbb R}=\{(z,\,t):\;z\in{\mathbb C},\,t\in{\mathbb R}\}\). The basic \((0,1)\) Levi vector field is then \(\bar{Z}=\frac{\partial}{\partial\bar{z}}-i\frac{\partial P}{\partial\bar{z}}\frac{\partial}{\partial t}\), and let \(\bar{Z}=X_1+iX_2\). The real vector fields \(\{X_1,\,X_2\}\) and their commutators of orders \(\leq m\) span the tangent space at each point. Thus, this \(M_i\) is a special non-compact variant, with \(k=2\), of the manifolds considered in (A).The standard singular integrals on \(M_i\) are non-isotropic smoothing operators of order zero. The authors prove that the boundedness of the product operators is then a consequence of a natural Littlewood-Paley theory on \(\widetilde{M}\), which in turn is a consequence of a corresponding theory on each factor space. The square function for this theory is constructed from the heat kernel for the sub-Laplacian on each factor. The \(L^p\) theory of product singular integrals established in this paper can be used in a number of different situations, and in particular for estimates of fundamental solutions of \(\square_b\) on certain model domains in several complex variables. Reviewer: Yang Dachun (Beijing) Cited in 7 ReviewsCited in 56 Documents MSC: 42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.) 42B25 Maximal functions, Littlewood-Paley theory 43A99 Abstract harmonic analysis Keywords:product space; singular integral; Littlewood-Paley theory; heat kernel; sub-Laplacian PDFBibTeX XMLCite \textit{A. Nagel} and \textit{E. M. Stein}, Rev. Mat. Iberoam. 20, No. 2, 531--561 (2005; Zbl 1057.42016) Full Text: DOI EuDML References: [1] Chang, D.-C., Nagel, A. and Stein, E. M.: Estimates for the \? \partial -Neumann problem in pseudoconvex domains of finite type in C2. Acta Math. 169 (1992), 153-228. · Zbl 0821.32011 · doi:10.1007/BF02392760 [2] David, G. and Journé, J.-L.: A boundedness criterion for general- ized Calderón-Zygmund operators. Ann. of Math.(2) 120 (1984), 371-397. · Zbl 0567.47025 · doi:10.2307/2006946 [3] Fefferman, R. and Stein, E.M.: Singular integrals on product spaces. Adv. in Math. 45 (1982), 117-143. · Zbl 0517.42024 · doi:10.1016/S0001-8708(82)80001-7 [4] Jessen, B., Marcinkiewicz, J. and Zygmund, A.: Note on the differentiability of multiple integrals. Fund. Math. 25 (1935), 217-234. · Zbl 0012.05901 [5] Journé, J.L.: Calderón-Zygmund operators on product spaces. Rev. Mat. Iberoamericana 1 (1985), 55-91. · Zbl 0634.42015 · doi:10.4171/RMI/15 [6] Koenig, K.: On maximal Sobolev and Hölder estimates for the tan- gential Cauchy-Riemann operator and boundary Laplacian. Amer. J. Math. 124 (2002), 129-197. · Zbl 1014.32031 · doi:10.1353/ajm.2002.0003 [7] Müller, D., Ricci, F. and Stein, E.M.: Marcinkiewicz multipliers and multi-parameter structure on Heisenberg (-type) groups, I. Invent. Math. 119 (1995), 119-233. · Zbl 0857.43012 · doi:10.1007/BF01245180 [8] Nagel, A., Ricci, F. and Stein, E.M.: Singular integrals with flag kernels and analysis on quadratic CR manifolds. J. Funct. Anal. 181 (2001), 29-118. · Zbl 0974.22007 · doi:10.1006/jfan.2000.3714 [9] Nagel, A., Rosay, J.-P., Stein, E.M. and Wainger, S.: Esti- mates for the Bergman and Szegö kernels in C2. Ann. of Math. 129 (1989), 113-149. 561 · Zbl 0667.32016 · doi:10.2307/1971487 [10] Nagel, A. and Stein, E.M.: The b-Heat equation on pseudoconvex manifolds of finite type in C2. Math. Z. 238 (2001), 37-88. · Zbl 1039.32051 · doi:10.1007/s002090000245 [11] Nagel, A. and Stein, E.M.: Differentiable control metrics and scaled bump functions. J. Differential Geom. 57 (2001), 465-492. · Zbl 1041.58006 [12] Nagel, A. and Stein, E.M.: The \? \partial b-complex on decoupled bound- aries in Cn. Preprint. [13] Nagel, A., Stein, E.M. and Wainger. S.: Balls and metrics defined by vector fields I. Basic properties. Acta Math. 155 (1985), 103-147. · Zbl 0578.32044 · doi:10.1007/BF02392539 [14] Stein, E.M.: Topics in harmonic analysis related to the Littlewood- Paley theory. Annals of Mathematics Studies 63. Princeton University Press, Princeton, New Jersey, 1970. · Zbl 0193.10502 [15] Stein, E.M.: Harmonic analysis: real-variable methods, orthogonal- ity, and oscillatory integrals. Princeton Mathematical Series 43. Mono- graphs in Harmonic Analysis, III. Princeton University Press, Prince- ton, NJ, 1993 · Zbl 0821.42001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.