Han, Bin; Mo, Qun Symmetric MRA tight wavelet frames with three generators and high vanishing moments. (English) Zbl 1057.42026 Appl. Comput. Harmon. Anal. 18, No. 1, 67-93 (2005). Summary: Let \(\varphi\) be a compactly supported symmetric real-valued refinable function in \(L_2(\mathbb{R})\) with a finitely supported symmetric real-valued mask on \(\mathbb{Z}\). Under the assumption that the shifts of \(\varphi\) are stable, in this paper we prove that one can always construct three wavelet functions \(\psi^1\), \(\psi^2\), and \(\psi^3\) such that: (i) All the wavelet functions \(\psi^1\), \(\psi^2\), and \(\psi^3\) are compactly supported, real-valued and finite linear combinations of the functions \(\varphi(2\cdot-k)\), \(k\in\mathbb{Z}\); (ii) Each of the wavelet functions \(\psi^1\), \(\psi^2\), and \(\psi^3\) is either symmetric or antisymmetric; (iii) \(\{\psi^1,\psi^2,\psi^3\}\) generates a tight wavelet frame in \(L_2(\mathbb{R})\), that is, \[ \|f\|^2=\sum^3_{\ell=1} \sum_{j \in\mathbb{Z}} \sum_{k\in\mathbb{Z}}\bigl|\langle f,\psi^\ell_{j,k} \rangle \bigr|^2\;\forall f\in L_2(\mathbb{R}), \] where \(\psi^\ell_{j,k}:= 2^{j/2} \psi^\ell(2^j\cdot-k)\), \(\ell=1,2,3\) and \(j,k\in\mathbb{Z}\); (iv) Each of the wavelet functions \(\psi^1, \psi^2\), and \(\psi^3\) has the highest possible order of vanishing moments, that is, its order of vanishing moments matches the order of the approximation order provided by the refinable function \(\varphi\). We give an example to demonstrate that the assumption on stability of the refinable function \(\varphi\) cannot be dropped. Some examples of symmetric tight wavelet frames with three compactly supported real-valued symmetric/antisymmetric generators are given to illustrate the results and construction in this paper. Cited in 2 ReviewsCited in 36 Documents MSC: 42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems 42C15 General harmonic expansions, frames 41A15 Spline approximation 41A25 Rate of convergence, degree of approximation Keywords:symmetric tight wavelet frames; multiresolution analysis; oblique extension principle; symmetry; vanishing moments; sum rules × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Benedetto, J. J.; Li, S., The theory of multiresolution analysis frames and applications to filter banks, Appl. Comput. Harmon. Anal., 5, 389-427 (1998) · Zbl 0915.42029 [2] Chui, C. K.; He, W., Compactly supported tight frames associated with refinable functions, Appl. Comput. Harmon. Anal., 8, 293-319 (2000) · Zbl 0948.42022 [3] Chui, C. K.; He, W.; Stöckler, J., Compactly supported tight and sibling frames with maximum vanishing moments, Appl. Comput. Harmon. Anal., 13, 224-262 (2002) · Zbl 1016.42023 [4] Chui, C. K.; He, W.; Stöckler, J.; Sun, Q. Y., Compactly supported tight affine frames with integer dilations and maximum vanishing moments, Adv. Comput. Math., 18, 159-187 (2003) · Zbl 1059.42022 [5] Daubechies, I., The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory, 36, 961-1005 (1990) · Zbl 0738.94004 [6] Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 41, 909-996 (1988) · Zbl 0644.42026 [7] Daubechies, I., Ten Lectures on Wavelets, (CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61 (1992), SIAM: SIAM Philadelphia) · Zbl 0776.42018 [8] Daubechies, I.; Han, B., Pairs of dual wavelet frames from any two refinable functions, Constr. Approx., 20, 3, 325-352 (2004) · Zbl 1055.42025 [9] Daubechies, I.; Han, B.; Ron, A.; Shen, Z. W., Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal., 14, 1-46 (2003) · Zbl 1035.42031 [10] Han, B., Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a general dilation matrix, J. Comput. Appl. Math., 155, 43-67 (2003) · Zbl 1021.42020 [11] Han, B., On dual wavelet tight frames, Appl. Comput. Harmon. Anal., 4, 380-413 (1997) · Zbl 0880.42017 [12] B. Han, On a conjecture about MRA Riesz wavelet bases, Preprint, 2004; B. Han, On a conjecture about MRA Riesz wavelet bases, Preprint, 2004 [13] Han, B.; Mo, Q., Multiwavelet frames from refinable function vectors, Adv. Comput. Math., 18, 211-245 (2003) · Zbl 1059.42030 [14] Han, B.; Mo, Q., Tight wavelet frames generated by three symmetric \(B\)-spline functions with high vanishing moments, Proc. Amer. Math. Soc., 132, 77-86 (2004) · Zbl 1040.42030 [15] Han, B.; Mo, Q., Splitting a matrix of Laurent polynomials with symmetry and its application to symmetric framelet filter banks, SIAM J. Matrix Anal. Appl., 26, 1, 97-124 (2004) · Zbl 1088.65127 [16] B. Han, Z.W. Shen, Wavelets with short support, Preprint, 2003; B. Han, Z.W. Shen, Wavelets with short support, Preprint, 2003 [17] Jia, R. Q.; Wang, J. Z., Stability and linear independence associated with wavelet decompositions, Proc. Amer. Math. Soc., 117, 1115-1124 (1993) · Zbl 0770.42018 [18] Jiang, Q. T., Parameterizations of masks for tight affine frames with two symmetric/antisymmetric generators, Adv. Comput. Math., 18, 247-268 (2003) · Zbl 1020.42020 [19] Lawton, W.; Lee, S. L.; Shen, Z. W., Stability and orthonormality of multivariate refinable functions, SIAM J. Math. Anal., 28, 999-1014 (1997) · Zbl 0872.41003 [20] Petukhov, A., Explicit construction of framelets, Appl. Comput. Harmon. Anal., 11, 313-327 (2001) · Zbl 0984.42022 [21] Petukhov, A., Symmetric framelets, Constr. Approx., 19, 309-328 (2003) · Zbl 1037.42038 [22] Ron, A.; Shen, Z. W., Affine systems in \(L_2(R^d)\): the analysis of the analysis operator, J. Funct. Anal., 148, 2, 408-447 (1997) · Zbl 0891.42018 [23] Selesnick, I. W., Smooth wavelet tight frames with zero moments, Appl. Comput. Harmon. Anal., 10, 163-181 (2000) · Zbl 0972.42025 [24] Selesnick, I. W.; Abdelnour, A. F., Symmetric wavelet frames with two generators, Appl. Comput. Harmon. Anal., 17, 211-225 (2004) · Zbl 1066.42027 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.