×

Isometries between \(C^ *\)-algebras. (English) Zbl 1057.46009

In this important paper, the authors describe into-isometries between \(C^\ast\)-algebras. Given such a map \(T : A \rightarrow B\), there is a largest projection \(p \in B^{\ast\ast}\) such that \(T(.)p : A \rightarrow B^{\ast\ast}\) is a triple homomorphism and \(T\{a,b,c\} = \{Ta,Tb,Tc\}p\) for all \(a,b,c \in A\). When \(A\) is abelian, one also gets \(\| (Ta)p\| = \| a\| \) for all \(a \in A\). This can be seen as an extension of a result of W. Holsztynski [Stud. Math. 26 133–136 (1966; Zbl 0156.36903)] that describes into-isometries between continuous function spaces.
Of related interest (since in the abelian case isometries are complete isometries) is the work of D. P. Blecher and D. Hay [“Complete isometries into \(C^\ast\)-algebras” (Preprint) (2002); see also Contemp. Math. 328, 85–97 (2003; Zbl 1078.46041)]. For further information on the structure of into-isometries, one may consult section 6.4 of the monograph by R. J. Fleming and J. E. Jamison [“Isometries on Banach spaces: function spaces” (Monographs and Surveys in Pure and Applied Mathematics 129, Chapman and Hall-CRC, Boca Raton) (2003; Zbl 1011.46001)].

MSC:

46B04 Isometric theory of Banach spaces
46L05 General theory of \(C^*\)-algebras
46L70 Nonassociative selfadjoint operator algebras
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Brown, L. G.: Semicontinuity and multipliers of C*-algebras. Canad. J. Math. 40 (1988), no. 4, 865-988. · Zbl 0647.46044
[2] Chu, C-H.: Jordan structures in Banach manifolds. In First International Congress of Chinese Mathematicians (Beijing, 1998), 201-210. AMS/IP Stud. Adv. Math. 20. Amer. Math. Soc., Providence, RI, 2001. · Zbl 1051.58003
[3] Chu, C-H., Dang, T., Russo, B. and Ventura, B.: Surjective isome- tries of real C*-algebras. J. London Math. Soc. 47 (1993), 97-118. · Zbl 0732.46037
[4] Dang, T., Friedman, Y. and Russo, B.: Affine geometric proofs of the Banach Stone theorems of Kadison and Kaup. Rocky Mountain J. Math. 20 (1990), 409-428. · Zbl 0738.47029
[5] Effros, E. G.: Order ideals in a C*-algebra and its dual. Duke Math. J. 30 (1963) 391-417. · Zbl 0117.09703
[6] Harris, L. A.: Bounded symmetric homogeneous domains in infinite di- mensional spaces. In Proceedings on Infinite Dimensional Holomorphy (In- ternat. Conf., Univ. Kentucky, Lexington, Ky., 1973), 13-40. Lecture Notes in Math. 364. Springer, Berlin, 1974. · Zbl 0293.46049
[7] Harris, L. A.: A generalization of C*-algebras. Proc. London Math. Soc. (3) 42 (1981) 331-361. · Zbl 0476.46054
[8] Holsztynski, W.: Continuous mappings induced by isometries of spaces of continuous functions. Studia Math. 26 (1966), 133-136. · Zbl 0156.36903
[9] Jeang, J-S. and Wong, N-C.: Weighted composition operators of C0(X)’s. J. Math. Anal. Appl. 201 (1996), 981-993. · Zbl 0936.47011
[10] Kadison, R. V.: Isometries of operator algebras. Ann. of Math. 54 (1951), 325-338. · Zbl 0045.06201
[11] Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 138 (1983), 503-529. · Zbl 0519.32024
[12] Morita, K.: Analytical characterization of displacements in general Poincaré space. Proc. Imp. Acad. Tokyo 17 (1941), 489-494. · Zbl 0060.24603
[13] Paterson, A. L. T. and Sinclair, A. M.: Characterisation of isometries between C*-algebras. J. London Math. Soc. (2) 5 (1972), 755-761. · Zbl 0248.46046
[14] Pedersen, G. K.: C*-algebras and their automorphism groups. Lon- don Mathematical Society Monographs 14. Academic Press, London-New York, 1979. · Zbl 0416.46043
[15] Prosser, R. T.: On the ideal structure of operator algebras. Memoir Amer. Math. Soc. 45, 1963. · Zbl 0125.06703
[16] Rodríguez Palacios, A.: Isometries and Jordan-isomorphisms onto C*- algebras. J. Operator Theory 40 (1988), 71-85. · Zbl 0995.46035
[17] Rodríguez Palacios, A.: Jordan structures in analysis. In Jordan alge- bras (Oberwolfach, 1992), 97-186. Walter De Gruyter, Berlin, 1994. 105 · Zbl 0818.17036
[18] Russo, B.: Structures of JB*-triples. In Jordan algebras (Oberwolfach, 1992), 208-280. Walter De Gruyter, Berlin, 1994.
[19] Takesaki, M.: Theory of operator algebras I. Springer-Verlag, Berlin, 1979. · Zbl 0436.46043
[20] Upmeier, H.: Symmetric Banach manifolds and Jordan C*-algebras. North-Holland, Amsterdam, 1985. · Zbl 0561.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.