×

zbMATH — the first resource for mathematics

Characterizing completable fuzzy metric spaces. (English) Zbl 1057.54010
The work deals with the separation of points in intuitionistic fuzzy topological spaces (IFTS). The Hausdorfness of an IFTS is described in terms of convergence of nets. It is shown that an IFTS is \(T_2\) if and only if each convergent intuitionistic fuzzy net has a unique limit. Weakened properties of fuzzy Hausdorfness and \(q\)-Hausdorffness are introduced and characterised.

MSC:
54A40 Fuzzy topology
54D35 Extensions of spaces (compactifications, supercompactifications, completions, etc.)
54E50 Complete metric spaces
54D10 Lower separation axioms (\(T_0\)–\(T_3\), etc.)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Engelking, R., General topology, (1977), PWN-Polish Sci. Publ Warsaw
[2] George, A.; Veeramani, P.V., On some results in fuzzy metric spaces, Fuzzy sets and systems, 64, 395-399, (1994) · Zbl 0843.54014
[3] George, A.; Veeramani, P.V., Some theorems in fuzzy metric spaces, J. fuzzy math., 3, 933-940, (1995) · Zbl 0870.54007
[4] George, A.; Veeramani, P.V., On some results of analysis for fuzzy metric spaces, Fuzzy sets and systems, 90, 365-368, (1997) · Zbl 0917.54010
[5] Grabiec, M., Fixed points in fuzzy metric spaces, Fuzzy sets and systems, 27, 385-389, (1989) · Zbl 0664.54032
[6] Gregori, V.; Romaguera, S., Some properties of fuzzy metric spaces, Fuzzy sets and systems, 115, 485-489, (2000) · Zbl 0985.54007
[7] Gregori, V.; Romaguera, S., On completion of fuzzy metric spaces, Fuzzy sets and systems, 130, 399-404, (2002) · Zbl 1010.54002
[8] Gregori, V.; Romaguera, S.; Sapena, A., Uniform continuity in fuzzy metric spaces, Rend. istit. mat. univ. trieste, 32, Suppl. 2, 81-88, (2001) · Zbl 1008.54005
[9] Kramosil, I.; Michalek, J., Fuzzy metric and statistical metric spaces, Kybernetika, 11, 326-334, (1975)
[10] Sapena, A., A contribution to the study of fuzzy metric spaces, Appl. gen. topology, 2, 63-76, (2001) · Zbl 0985.54006
[11] Schweizer, B.; Sklar, A., Statistical metric spaces, Pacific J. math., 10, 314-334, (1960) · Zbl 0091.29801
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.