zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Estimating a distribution function for censored time series data. (English) Zbl 1057.62068
Summary: Consider a long term study, where a series of dependent and possibly censored failure times is observed. Suppose that the failure times have a common marginal distribution function, but they exhibit a mode of time series structure such as $\alpha$-mixing. The inference on the marginal distribution function is of interest to us. The main results of this article show that, under some regularity conditions, the Kaplan-Meier estimator enjoys uniform consistency with rates, and a stochastic process generated by the Kaplan Meier estimator converges weakly to a certain Gaussian process with a specified covariance structure. Finally, an estimator of the limiting variance of the Kaplan-Meier estimator is proposed and its consistency is established.

62M10Time series, auto-correlation, regression, etc. (statistics)
62G07Density estimation
60F05Central limit and other weak theorems
62G05Nonparametric estimation
62M09Non-Markovian processes: estimation
Full Text: DOI
[1] Andrews, D. W. K.: Laws of large numbers for dependent nonidentically distributed random variables. Econ. theory 4, 458-467 (1988)
[2] Auestad, B.; Tjøstheim, D.: Identification of nonlinear time series: first order characterization and order determination. Biometrika 77, 669-687 (1990)
[3] Billingsley, P.: Convergence of probability measures. (1968) · Zbl 0172.21201
[4] Breslow, N.; Crowley, J.: A large sample study of the life table and product limit estimators under random censorship. Ann. statist. 2, 437-453 (1974) · Zbl 0283.62023
[5] Cai, Z.: Asymptotic properties of kaplan--meier estimator for censored dependent data. Statist. probab. Lett. 37, 381-389 (1998) · Zbl 0902.62040
[6] Cai, J.; Prentice, R. L.: Estimating equations for hazard ratio parameters based on correlated failure time data. Biometrika 82, 151-164 (1995) · Zbl 0823.62084
[7] Cai, Z.; Roussas, G. G.: Uniform strong estimation under ${\alpha}$-mixing, with rates. Statist. probab. Lett. 15, 47-55 (1992) · Zbl 0757.62024
[8] Cai, Z.; Roussas, G. G.: Kaplan--meier estimator under association. J. multivariate anal. 67, 318-348 (1998) · Zbl 1030.62521
[9] Chen, R.; Tsay, R.: Functional coefficient autoregressive models. J. amer. Statist. assoc. 88, 298-308 (1993) · Zbl 0776.62066
[10] Cox, R. D.; Oakes, D.: Analysis of survival data. (1984)
[11] Gill, R. D.: Censoring and stochastic integrals. Mathematical centre tracts 124 (1980) · Zbl 0456.62003
[12] Gill, R. D.: Testing with replacement and the product limit estimator. Ann. statist. 9, 853-860 (1981) · Zbl 0468.62039
[13] Gill, R. D.: Large sample behavior of the product limit estimator on the whole line. Ann. statist. 11, 49-56 (1983) · Zbl 0518.62039
[14] Gorodetskii, V. V.: On the strong mixing property for linear sequences. Theory probab. Appl. 22, 411-413 (1977)
[15] Hall, P.; Heyde, C. C.: Martingale limit theory and its applications. (1980) · Zbl 0462.60045
[16] Ibragimov, I. A.; Linnik, Yu.V.: Independent and stationary sequences of random variables. (1971) · Zbl 0219.60027
[17] Kang, S.; Koehler, K. J.: Modification of the greenwood formula for correlated response times. Biometrics 53, 885-899 (1997) · Zbl 0890.62081
[18] Kaplan, E. L.; Meier, P.: Nonparametric estimation from incomplete observations. J. amer. Statist. assoc. 53, 457-481 (1958) · Zbl 0089.14801
[19] Koehler, K. J.: An analysis of temperature effects on bean leaf egg hatch times. (1995)
[20] Koehler, K. J.; Symanowski, J.: Constructing multivariate distributions with specific marginal distributions. J. multivariate anal. 55, 261-282 (1995) · Zbl 0863.62048
[21] N. N. Leonenko, and, L. M. Sakhno, On the Kaplan--Meier estimator of long-range dependent sequences, unpublished manuscript, 2000. · Zbl 1092.62510
[22] Masry, E.; Tjøstheim, D.: Nonparametric estimation and identification of nonlinear ARCH time series: strong convergence and asymptotic normality. Econ. theory 11, 258-289 (1995)
[23] Masry, E.; Tjøstheim, D.: Additive nonlinear ARX time series and projection estimates. Econ. theory 13, 214-252 (1997)
[24] Peterson, A. V.: Expressing the kaplan--meier estimator as a function of empirical subsurvival functions. J. amer. Statist. assoc. 72, 854-858 (1977) · Zbl 0372.62077
[25] Shao, Q. -M.; Yu, H.: Weak convergence for weighted empirical processes of dependent sequences. Ann. probab. 24, 2098-2127 (1996) · Zbl 0874.60006
[26] Shorack, G. R.; Wellner, J. A.: Empirical processes with applications to statistics. (1986) · Zbl 1170.62365
[27] Shumway, R. H.; Azari, A. S.; Johnson, P.: Estimating mean concentrations under transformation for environmental data with detection limits. Technometrics 31, 347-356 (1988)
[28] Stute, W.; Wang, J. L.: A strong law under random censorship. Ann. statist. 21, 1591-1607 (1993) · Zbl 0785.60020
[29] Tucker, H.: A graduate course in probability. (1967) · Zbl 0159.45702
[30] Voelkel, J.; Crowley, J.: Nonparametric inference for a class of semi-Markov process with censored observation. Ann. statist. 12, 142-160 (1984) · Zbl 0552.62020
[31] Wang, J. G.: A note on the uniform consistency of the kaplan--meier estimator. Ann. statist. 15, 1313-1316 (1987) · Zbl 0631.62043
[32] Wei, L. J.; Lin, D. Y.; Weissfeld, L.: Regression analysis of multivariate incomplete failure times data by modeling marginal distributions. J. amer. Statist. assoc. 84, 1064-1072 (1989)
[33] Withers, C. S.: Conditions for linear processes to be strong mixing. Z. wahrsch. Verw. gebiete 57, 477-480 (1981) · Zbl 0465.60032
[34] Ying, Z.; Wei, L. J.: The kaplan--meier estimate for dependent failure time observations. J. multivariate anal. 50, 17-29 (1994) · Zbl 0798.62048
[35] Yu, H.: A glivenko--cantelli lemma and weak convergence for empirical processes of associated sequences. Probab. theory related fields 95, 357-370 (1993) · Zbl 0792.60018