zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Unsolved problems in number theory. 3rd ed. (English) Zbl 1058.11001
Problem Books in Mathematics. New York, NY: Springer-Verlag (ISBN 0-387-20860-7/hbk). xviii, 437 p. $ 69.95; EUR 69.95/net; £ 54.00; sFr 123.50 (2004).
This is the third edition of Guy’s well-known problem book on number theory (see Zbl 0474.10001 and Zbl 0805.11001 for previous editions), which is organised into six categories: prime numbers, divisibility, additive number theory, Diophantine equations, sequences of integers, and miscellaneous. Most of the problems are of an elementary, combinatorial nature. All of them can be understood without too much effort, but solving them is a different matter; indeed some of the problems are hopelessly difficult, including a few notorious ones. Being problems in number theory, even a complete solution to an original problem often generates yet more related problems. Thus many of the problems from the earlier editions have been expanded with more up to date comments and remarks. For most readers the bibliographies are the more useful aspects of the book; however, it has become so extensive for many of the problems that some pruning has become necessary. There are also several new problems, but the more interesting new feature is that, for about half of the problems, there is now a link of references to {\it N. J. A. Sloane’s} [Notices Am. Math. Soc. 50, No. 8, 912--915 (2003; Zbl 1044.11108)] very useful {\it Online Encyclopedia of Integer Sequences}. As the author remarks, the book is perpetually out of date, but there are STOP PRESS entries. For example, in the problem concerning arithmetic progression of primes, reference is given for the recent announcement by Ben Green and Terence Tao that the primes contain arbitrarily long arithmetic progressions. There is little doubt that a new generation of talented young mathematicians will make very good use of this book, although it has to be said that the new edition can do with some copy-editing and proof-reading, because there are many easily detectable but irritating misprints.

11-02Research monographs (number theory)
00A07Problem books
11BxxSequences and sets of numbers
11DxxDiophantine equations
11NxxMultiplicative number theory
11PxxAdditive number theory; partitions
11AxxElementary number theory