×

Braid monodromy and topology of plane curves. (English) Zbl 1058.14053

The authors prove that the braid monodromy of an affine plane curve determines the topology of the related projective curves.

MSC:

14H50 Plane and space curves
14D05 Structure of families (Picard-Lefschetz, monodromy, etc.)
14H30 Coverings of curves, fundamental group
20F36 Braid groups; Artin groups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] E. Artal, J. Carmona, and J. I. Cogolludo, Effective invariants of braid monodromy , preprint, 2001, · Zbl 1109.14013
[2] E. Artin, Theory of braids , Ann. of Math. (2) 48 (1947), 101–126. JSTOR: · Zbl 0030.17703 · doi:10.2307/1969218
[3] J. S. Birman, Braids, Links, and Mapping Class Groups , Ann. of Math. Stud. 82 , Princeton Univ. Press, Princeton, 1974.
[4] J. Carmona, Monodromía de trenzas de curvas algebraicas planas , thesis in preparation, University of Zaragoza, Spain.
[5] O. Chisini, Una suggestiva rappresentazione reale per le curve algebriche piane , Ist. Lombardo, Rend., II. Ser. 66 (1933), 1141–1155. · Zbl 0008.22001
[6] E. R. van Kampen, On the fundamental group of an algebraic curve , Amer. J. Math. 55 (1933), 255–260. JSTOR: · Zbl 0006.41502 · doi:10.2307/2371128
[7] V. S. Kulikov and M. Teicher, Braid monodromy factorizations and diffeomorphism types (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 64 , no. 2 (2000), 89–120. · Zbl 1004.14005
[8] A. Libgober, On the homotopy type of the complement to plane algebraic curves , J. Reine Angew. Math. 367 (1986), 103–114. · Zbl 0576.14019 · doi:10.1515/crll.1986.367.103
[9] –. –. –. –., Invariants of plane algebraic curves via representations of the braid groups , Invent. Math. 95 (1989), 25–30. · Zbl 0674.14015 · doi:10.1007/BF01394143
[10] –. –. –. –., “Characteristic varieties of algebraic curves” in Applications of Algebraic Geometry to Coding Theory, Physics and Computation (Eilat, Israel, 2001) , ed. C. Ciliberto, F. Hirzebruch, R. Miranda, and M. Teicher, NATO Sci. Ser. II Math. Phys. Chem. 36 , Kluwer, Dordrecht, 2001, 215–254.
[11] B. G. Moishezon, “Stable branch curves and braid monodromies” in Algebraic Geometry (Chicago, 1980) , Lecture Notes in Math. 862 , Springer, Berlin, 1981, 107–192. · Zbl 0476.14005
[12] B. Moishezon and M. Teicher, “Braid group technique in complex geometry, I: Line arrangements in \(\mathbbC\rmP^ 2\)” in Braids (Santa Cruz, Calif., 1986), Contemp. Math. 78 , Amer. Math. Soc., Providence, 1988, 425–455. · Zbl 0674.14019
[13] O. Zariski, On the problem of existence of algebraic functions of two variables possessing a given branch curve , Amer. J. Math. 51 (1929), 305–328. JSTOR: · doi:10.2307/2370712
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.