×

Oscillation criteria related to integral averaging technique for linear matrix Hamiltonian systems. (English) Zbl 1058.34038

New oscillation criteria are established for the linear matrix Hamiltonian system \[ U'=A(x)U+B(x)V,\quad V'=C(x)U-A^*(x)V, \tag{*} \] where \(A(x)\), \(B(x)=B^*(x)>0\) and \(C(x)=C^*(x)\) are \(n\times n\)-matrices of real-valued continuous functions on the interval \(I=[x_0,\infty)\). These results are obtained by using the generalized Riccati technique and the integral averaging technique introduced by Ch. G. Philos (1989), and they generalize a number of existing results, e.g., results of L. H. Erbe, Q. Kong and S. Ruan [Proc. Am. Math. Soc. 117, No. 4, 957–962 (1993; Zbl 0777.34024)], I. Sowjanya Kumari and S. Umamaheswaram [J. Differ. Equations 165, No. 1, 174–198 (2000; Zbl 0970.34025)], H. J. Li [J. Math. Anal. Appl. 194, 217–234 (1995; Zbl 0836.34033)] and Z. Zheng, F. Meng and Y. Yu [Acta Math. Sin. 41, No. 6, 1231–1238 (1998; Zbl 1018.34033)]. Three examples illustrate various oscillation criteria.

MSC:

34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Butler, G. J.; Erbe, L. H.; Mingarelli, A. B., Riccati techniques and variational principles in oscillation theory for linear systems, Trans. Amer. Math. Soc., 303, 263-282 (1987) · Zbl 0648.34031
[2] Byers, R.; Harris, B. J.; Kwong, M. K., Weighted means and oscillation conditions for second order matrix differential equations, J. Differential Equations, 61, 164-177 (1986) · Zbl 0609.34042
[3] Coles, W. J.; Kinyon, M. K., Summability methods for oscillation of linear second-order matrix differential equations, Rocky Mountain J. Math., 24, 19-36 (1994) · Zbl 0807.34042
[4] Erbe, L. H.; Kong, Q.; Ruan, S., Kamenev type theorems for second order matrix differential systems, Proc. Amer. Math. Soc., 117, 957-962 (1993) · Zbl 0777.34024
[5] Etgen, G. J.; Pawlowski, J. F., Oscillation criteria for second order self-adjoint differential systems, Pacific J. Math., 66, 99-110 (1976) · Zbl 0355.34017
[6] Hartman, P., On nonscillatory linear differential equations of second order, Amer. J. Math., 74, 389-400 (1952) · Zbl 0048.06602
[7] Hartman, P., Oscillation criteria for self-adjoint second order differential systems and “principal sectional curvatures”, J. Differential Equations, 34, 326-338 (1979) · Zbl 0443.34029
[8] Hinton, D. B.; Lewis, R. T., Oscillation theory of generalized second order differential equations, Rocky Mountain J. Math., 10, 751-761 (1980) · Zbl 0485.34021
[9] Kamenev, I. V., An integral criterion for oscillation of linear differential equations of second order, Mat. Zametki, 23, 249-251 (1978) · Zbl 0386.34032
[10] Sowjanya Kumari, I.; Umamaheswaram, S., Oscillation criteria for linear matrix Hamiltonian system, J. Differential Equations, 165, 174-198 (2000) · Zbl 0970.34025
[11] Li, H. J., Oscillation criteria for second order linear differential equations, J. Math. Anal. Appl., 194, 217-234 (1995) · Zbl 0836.34033
[12] Meng, F.; Wang, J.; Zheng, Z., A note on Kamenev type theorems for second order matrix differential systems, Proc. Amer. Math. Soc., 126, 391-395 (1998) · Zbl 0891.34037
[13] Mingarelli, A. B., On a conjecture for oscillation of second order ordinary differential systems, Proc. Amer. Math. Soc., 82, 593-598 (1981) · Zbl 0487.34030
[14] Parhi, N.; Praharaj, P., Oscillation of linear second order matrix differential equations, J. Math. Anal. Appl., 221, 287-305 (1998) · Zbl 0910.34042
[15] Philos, Ch. G., Oscillation theorems for linear differential equations of second order, Arch. Math. (Basel), 53, 482-492 (1989) · Zbl 0661.34030
[16] Reid, W. T., Applied Mathematical Sciences (1980), Springer-Verlag: Springer-Verlag New York, vol. 31
[17] Rogovchenko, Yu. V., Note on ‘Oscillation criteria for second order linear differential equations’, J. Math. Anal. Appl., 203, 560-563 (1996) · Zbl 0862.34024
[18] Wang, Q. R., Oscillation criteria for second order matrix differential systems, Arch. Math. (Basel), 76, 385-390 (2001) · Zbl 0989.34024
[19] Wintner, A., A criterion of oscillatory stability, Quart. Appl. Math., 7, 115-117 (1949) · Zbl 0032.34801
[20] Zheng, Z.; Meng, F.; Yu, Y., On the oscillation of second order linear matrix differential systems, Acta Math. Sinica, 41, 1231-1238 (1998) · Zbl 1018.34033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.