# zbMATH — the first resource for mathematics

The sharp Jackson inequality in the space $$L_p$$ on the sphere. (English. Russian original) Zbl 1058.41502
Math. Notes 66, No. 1, 40-50 (1999); translation from Mat. Zametki 66, No. 1, 50-62 (1999).
The author gives a proof of his theorem which was announced in [”The Jackson theorem in $$L_p(S^{n-1})$$” (Russian), in Voronezh Winter School on Modern Methods in the Theory of Functions and Related Problems in Applied Mathematics and Mechanics (abstracts), p. 56, Izdat. Voronezh. Gos. Univ., Voronezh, 1997; per bibl.].
Let $$S^{n-1}=\{x\in\mathbb R^n\colon |x|=1\}, \Gamma_{\alpha}(x)=\{y\in S^{n-1}\colon xy=\cos\alpha\}$$, and $$\sigma$$ and $$\gamma_{\alpha}$$ be normalized measures on $$S^{n-1}$$ and $$\Gamma_{\alpha}(x)$$ respectively. Let $\begin{split} L_p(S^{n-1})=\Big\{f\colon S^{n-1}\to \mathbb C| \| f\|_p=\Big(\int_{S^{n-1}} |f|^p \, d\sigma\Big)^{1/p}<\infty\Big\},\\ 1\leq p\leq\infty,\end{split}$ and let $E_R(f,S^{n-1})_p=\inf\Big\{\|f-g\|_p\colon g\in\sum_{l=0}^{R-1}\bigoplus H_l\Big\},\quad R\in\mathbb N,$ be the best approximation of the function $$f\in L_p(S^{n-1})$$ by spherical harmonics $$H_l$$ of degrees $$\leq R-1$$. Let $\omega(\delta,f,S^{n-1})_p=\sup_{\alpha\leq\delta}\Big(\int_{S^{n-1}} \int_{\Gamma_{\alpha}(x)}|f(y)-f(x)|^p\, d_{\gamma_{\alpha}}(y)\, d\sigma(x) \Big)^{1/p},$ $D(\delta,R,S^{n-1})_p=\sup_{f\in L_p(S^{n-1})}\frac{E_R(f,S^{n-1})_p} {\omega(\delta,f,S^{n-1})_p}$ be the exact constant in the Jackson inequality and $$t_R=\cos\tau_R$$ be the greatest zero of Gegenbauer’s polynomial $$P_R(t)$$.
Theorem. If $$n\geq 3, 1\leq p<2$$, then $D(2\tau_R,2R-1,S^{n-1})_p=2^{-1/p'},\quad p'=p/(p-1).$

##### MSC:
 41A17 Inequalities in approximation (Bernstein, Jackson, Nikol’skiĭ-type inequalities)
Full Text:
##### References:
 [1] D. V. Gorbachev, ”Jackson’s theorem in $$\mathfrak{L}_P (S^{N - 1} )$$ ,” in:Abstracts of Papers of the Voronezh Winter School ”Contemporary Methods of Function Theory and Related Problems of Mathematics and Mechanics” [in Russian], Izd. Voronezh Gos. Univ., Voronezh (1997), p. 56. [2] N. Ya. Vilenkin,Special Functions and Group Representation Theory [in Russian], Nauka, Moscow (1991). [3] Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, (M. Abramowitz and I. Stegun, editors), National Bureau of Standards, Washington, D.C. (1964). [4] A. G. Babenko, ”Sharp Jackson-Stechkin inequality inL 2 for multidimensional spheres”Mat. Zametki [Math. Notes],60, No. 3, 333–355 (1996). · Zbl 0903.41014 [5] N. P. Korneichuk,Extremum Problems in Approximation Theory [in Russian], Nauka, Moscow (1976). [6] N. I. Chernykh, ”Jackson’s inequality inL p (0,2$$\pi$$) with sharp constant,”Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.],198, 232–241 (1992). · Zbl 0822.42002 [7] V. I. Ivanov, ”On the approximation of functions in the spacesL p,”Mat. Zametki [Math. Notes],56, No. 2, 15–40 (1994). [8] V. A. Yudin, ”Lower bounds for spherical design,”Izv. Ross. Akad. Nauk Ser. Mat. [Russian Acad. Sci. Izv. Math.],61, No. 3, 213–223 (1997). · Zbl 0890.05015 [9] E. Hewitt and K. Ross,Abstract Harmonic Analysis, Springer-Verlag, Heidelberg (1970). · Zbl 0213.40103 [10] V. I. Levenshtein, ”Boundaries for packings of metric spaces with applications,”Problems of Cybernatics,40, 43–110 (1983). [11] A. Benedeck and R. Panzone, ”The spacesL p with mixed norm,”Duke Math. J.,28, 301–324 (1961). · Zbl 0107.08902 · doi:10.1215/S0012-7094-61-02828-9 [12] G. Szegö,Orthogonal Polynomials, Colloquim Publ., Vol. XXIII, Amer. Math. Soc., Providence, R.I. (1959) [13] E. Stein and G. Weiss,Introduction to Fourier Analysis on Euclidean Spaces Princeton Univ. Press, Princeton, N.J. (1974). [14] V. I. Berdyshev, ”On Jackson’s theorem inL p,”Trudy Mat. Inst. Steklov [Proc. Steklov Inst. Math.],88, 13–16 (1967). · Zbl 0162.36201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.