×

zbMATH — the first resource for mathematics

Mean curvature 1 surfaces in hyperbolic 3-space with low total curvature. II. (English) Zbl 1058.53008
This paper is a continuation of a preceding work of the same authors with the same title. In the present paper they classify all complete surfaces of constant mean curvature 1 in hyperbolic 3-space \(H^3\) which have total absolute curvature not exceeding \(4\pi\). As the authors point out, the total curvature of such surfaces need not be an integer multiple of \(4\pi\). The classification given is explicit in terms of the holomorphic data of the surface, namely the secondary Gauss map and the Hopf differential. Here the secondary Gauss map of a constant mean curvature 1 surface \(f: M\to H^3\) is a local isometry from \((\widetilde M, -Kds^2)\) into \(\mathbb{C}\mathbb{P}^1\) endowed with the Fubini-Study metric, where \(\widetilde M\) denotes the universal cover of \(M\) and \(ds^2\) and \(K\) are the induced metric and the Gauss curvature of \(f\), respectively.
For part I see W. Rossman, M. Umehara and K. Yamada [Hiroshima Math. J. 34, No. 1, 21–56 (2004; Zbl 1088.53004)].

MSC:
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
53A35 Non-Euclidean differential geometry
53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
Citations:
Zbl 1088.53004
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J. L. M. Barbosa and A. G. Colares, Minimal Surfaces in \(\R^3\), Lecture Notes in Math. 1195, Springer-Verlag, Berlin, 1986. · Zbl 0609.53002
[2] L. Bieberbach, Theorie der gewöhnlichen Differentialgleichungen auf funktionentheoretischer Grundlage dargestellt, Zweite Auflage, Springer-Verlag, Berlin-New York, 1965. · Zbl 0124.04603
[3] R. Bryant, Surfaces of mean curvature one in hyperbolic space, Astérisque 154–155 (1987), 321–347. · Zbl 0635.53047
[4] W. Chen and C. Li, What kinds of singular surfaces can admit constant curvature?, Duke Math. J. 78 (1995), 437–451. · Zbl 0854.53036
[5] C. C. Chen and F. Gackstatter, Elliptische und hyperelliptische Funktionen und vollständige Minimalflächen vom Enneperschen Typ, Math. Ann. 259 (1982), 359–369. · Zbl 0468.53008
[6] P. Collin, L. Hauswirth and H. Rosenberg, The geometry of finite topology Bryant surfaces, Ann. of Math. (2) 153 (2001), 623–659. · Zbl 1066.53019
[7] R. Sa Earp and E. Toubiana, On the geometry of constant mean curvature one surfaces in hyperbolic space, Illinois J. Math. 45 (2001), 371–401. · Zbl 0997.53042
[8] R. Sa Earp and E. Toubiana, Meromorphic data for mean curvature one surfaces in hyperbolic space, · Zbl 1111.53048
[9] F. J. Lopez, The classification of complete minimal surfaces with total curvature greater than \(-12\pi\), Trans. Amer. Math. Soc. 334 (1992), 49–74. · Zbl 0771.53005
[10] R. Osserman, A Survey of Minimal Surfaces, 2nd ed., Dover Publications, Inc., New York, 1986. · Zbl 0209.52901
[11] W. Rossman and K. Sato, Constant mean curvature surfaces with two ends in hyperbolic space, Experimental Math. 7(2) (1998), 101–119. · Zbl 0980.53081
[12] W. Rossman, M. Umehara and K. Yamada, Irreducible constant mean curvature \(1\) surfaces in hyperbolic space with positive genus, Tôhoku Math. J. 49 (1997), 449–484. · Zbl 0913.53025
[13] W. Rossman, M. Umehara and K. Yamada, A new flux for mean curvature \(1\) surfaces in hyperbolic \(3\)-space, and applications, Proc. Amer. Math. Soc. 127 (1999), 2147–2154. · Zbl 0921.53030
[14] W. Rossman, M. Umehara and K. Yamada, Mean curvature \(1\) surfaces in hyperbolic \(3\)-space with low total curvature I, preprint, math.DG/0008015. · Zbl 1088.53004
[15] W. Rossman, M. Umehara and K. Yamada, Period problems for mean curvature one surfaces in \(H^3\) (with application to surfaces of low total curvature), to appear in “Surveys on Geometry and Integrable Systems”, Advanced Studies in Pure Mathematics, Mathematical Society of Japan. · Zbl 1171.53041
[16] A. J. Small, Surfaces of Constant Mean Curvature \(1\) in \(H^3\) and Algebraic Curves on a Quadric, Proc. Amer. Math. Soc. 122 (1994), 1211–1220. · Zbl 0823.53044
[17] M. Troyanov, Metric of constant curvature on a sphere with two conical singularities, Differential Geometry (Peñiscda, 1988), 296–306, Lecture Notes in Math. 1410, Springer-Verlag, 1989. · Zbl 0697.53037
[18] M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991), 793–821. · Zbl 0724.53023
[19] M. Umehara and K. Yamada, Complete surfaces of constant mean curvature-\(1\) in the hyperbolic \(3\)-space, Ann. of Math. 137 (1993), 611–638. JSTOR: · Zbl 0795.53006
[20] M. Umehara and K. Yamada, A parameterization of Weierstrass formulae and perturbation of some complete minimal surfaces of \(\R^3\) into the hyperbolic \(3\)-space, J. Reine Angew. Math. 432 (1992), 93–116. · Zbl 0757.53033
[21] M. Umehara and K. Yamada, Surfaces of constant mean curvature-\(c\) in \(H^3(-c^2)\) with prescribed hyperbolic Gauss map, Math. Ann. 304 (1996), 203–224. · Zbl 0841.53050
[22] M. Umehara and K. Yamada, Another construction of a CMC-\(1\) surface in \(H^3\), Kyungpook Math. J. 35 (1996), 831–849. · Zbl 1004.53043
[23] M. Umehara and K. Yamada, A duality on CMC-\(1\) surface in the hyperbolic \(3\)-space and a hyperbolic analogue of the Osserman Inequality, Tsukuba J. Math. 21 (1997), 229–237. · Zbl 1027.53010
[24] M. Umehara and K. Yamada, Metrics of constant curvature one with three conical singularities on the \(2\)-sphere, Illinois J. Math. 44 (2000), 72–94. · Zbl 0958.30029
[25] Z. Yu, Value distribution of hyperbolic Gauss maps, Proc. Amer. Math. Soc. 125 (1997), 2997–3001. · Zbl 0903.53004
[26] Z. Yu, The inverse surface and the Osserman Inequality, Tsukuba J. Math. 22 (1998), 575–588. · Zbl 0973.53509
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.