Remarks on the length spectrum, and counting. (Remarques sur le spectre des longueurs d’une surface et comptages.) (French) Zbl 1058.53063

Summary: This paper deals with the length spectrum associated to a negatively curved manifold. In particular we prove that the length spectrum of a surface is not included in a direct subgroup of \(\mathbb R\). We also compare the length spectrum for different Riemannian structures.


53D25 Geodesic flows in symplectic geometry and contact geometry
37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
53C22 Geodesics in global differential geometry
Full Text: DOI


[1] [BE] Y. Benoist:Propriétés asymptotiques des groupes linéaires, Geometric and functional Analysis,7: (1997), 1-47. · Zbl 0947.22003 · doi:10.1007/PL00001613
[2] [Bo] M. Bourdon:Structure conforme au bord et flot géodésique d’un CAT (?1)-espace, L’enseignement mathématique,41: (1995), 63-102.
[3] [Bu] M. Burger:Intersection, Manhattan curve and Patterson-Sullivan theory in rank 2, Intern. Math. Math. res. notices, (1993), no. 7, 217-225. · Zbl 0829.57023 · doi:10.1155/S1073792893000236
[4] [D] F. Dal’bo:Famille de groupes agissant sur le produit de deux variétés de Hadamard, Sém. de Grenoble, 1997.
[5] [D-P] F. Dal’bo & M. Peigné:Some negatively curved manifold with cusps, mixing and counting, J. Reigne Angew. Math.497: (1998), 141-169. · Zbl 0890.53043 · doi:10.1515/crll.1998.037
[6] [G-H] Y. Guivarc’h & J. Hardy:Théorèmes limites pour une classe de chaines de Markov et applications aux difféomorphismes d’Anosov, Ann. I.H.P. no. 1, (1998), 73-98.
[7] [K] I. Kim:Rigidity of rank one symmetric spaces and their product, (1997), (prépublication).
[8] [L] F. Ledrappier:Structure au bord des variétés à courbure négative, Sém. de Grenoble, (1994-1995), 97-122.
[9] [O1] J.-P. Otal:Sur la géométrie symplectique de l’espace des géodésiques d’une variété à courbure négative, Revista matematica Ibero americana,8: (1992), no. 3.
[10] [O2] J.-P. Otal:Le spectre marqué des longueurs des surfaces à courbure négative, Annales of Math.13: (1990), 151-162. · Zbl 0699.58018 · doi:10.2307/1971511
[11] [P] M. Peigné:Aspects stochastiques d’actions de groupes et de semi-groupes, (habilitation Rennes 1998).
[12] [P-P] W. Parry & M. Pollicott:An analogue of the prime number theorem for closed orbits of axiome A flows, Annales of Math.118: (1983), 573-591. · Zbl 0537.58038 · doi:10.2307/2006982
[13] [P-S] M. Pollicott & S. Sharp:The circle problem on surfaces of variable negative curvature, Mh. Math.123: (1997), 61-70. · Zbl 0876.58040 · doi:10.1007/BF01316937
[14] [R] J. Rudolph:Ergodic behavior of Sullivan’s geometric measure on a geometicaly finite hyperbolic manifold, Ergod. Th. Dym. Syst.2: (1982), 491-512. · Zbl 0525.58025
[15] [S-S] R. Schwartz & R. Sharp:The correlation of length spectra of two hyperbolic surfaces, Comm. Math. Phys.153: (1993), 423-430. · Zbl 0772.58045 · doi:10.1007/BF02096650
[16] [T] P. Tukia:On homomorphism of geometricaly finite möbius groups, Publ. Math. I.H.E.S.,61: (1985), 171-214. · Zbl 0572.30036
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.