Bickel, Peter J.; Ritov, Ya’acov Nonparametric estimators which can be “plugged-in”. (English) Zbl 1058.62031 Ann. Stat. 31, No. 4, 1033-1053 (2003). Summary: We consider nonparametric estimation of an object such as a probability density or a regression function. Can such an estimator achieve the ratewise minimax rate of convergence on suitable function spaces, while, at the same time, when “plugged-in”, estimate efficiently (at a rate of \(n^{-1/2}\) with the best constant) many functionals of the object? For example, can we have a density estimator whose definite integrals are efficient estimators of the cumulative distribution function? We show that this is impossible for very large sets, for example, expectations of all functions bounded by \(M<\infty\). However, we also show that it is possible for sets as large as indicators of all quadrants, that is, distribution functions. We give appropriate constructions of such estimates. Cited in 1 ReviewCited in 37 Documents MSC: 62G07 Density estimation 62G08 Nonparametric regression and quantile regression 62G20 Asymptotic properties of nonparametric inference 62C20 Minimax procedures in statistical decision theory × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] ANDERSEN, P. K. and GILL, R. D. (1982). Cox’s regression model for counting processes: A large sample study. Ann. Statist. 10 1100-1120. · Zbl 0526.62026 · doi:10.1214/aos/1176345976 [2] BEGUN, J. M., HALL, W. J., HUANG, W.-M. and WELLNER, J. A. (1983). Information and asy mptotic efficiency in parametric-nonparametric models. Ann. Statist. 11 432-452. · Zbl 0526.62045 · doi:10.1214/aos/1176346151 [3] BICKEL, P. J., KLAASSEN, C. A. J., RITOV, Y. and WELLNER, J. A. (1998). Efficient and Adaptive Estimation for Semiparametric Models. Springer, New York. · Zbl 0894.62005 [4] BROWN, L. D. and LOW, M. G. (1996). Asy mptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. · Zbl 0867.62022 · doi:10.1214/aos/1032181159 [5] CAI, T. T. (2002). On adaptive wavelet estimation of a derivative and other related linear inverse problems. J. Statist. Plann. Inference 108 325-349. · Zbl 1016.62025 · doi:10.1016/S0378-3758(02)00316-6 [6] CSÖRG O, S. and MIELNICZUK, J. (1988). Density estimation in the simple proportional hazards model. Statist. Probab. Lett. 6 419-426. · Zbl 0691.62039 · doi:10.1016/0167-7152(88)90102-2 [7] EFRON, B. and TIBSHIRANI, R. (1996). Using specially designed exponential families for density estimation. Ann. Statist. 24 2431-2461. · Zbl 0878.62028 · doi:10.1214/aos/1032181161 [8] GILL, R. D., VARDI, Y. and WELLNER, J. A. (1988). Large sample theory of empirical distributions in biased sampling models. Ann. Statist. 16 1069-1112. · Zbl 0668.62024 · doi:10.1214/aos/1176350948 [9] GHORAI, J. K. and PATTANAIK, L. M. (1993). Asy mptotically optimal bandwidth selection of the kernel density estimator under the proportional hazards model. Comm. Statist. Theory Methods 22 1383-1401. · Zbl 0799.62036 · doi:10.1080/03610929308831092 [10] KOOPERBERG, C. and STONE, C. J. (1991). A study of logspline density estimation. Comput. Statist. Data Anal. 12 327-347. · Zbl 0825.62442 · doi:10.1016/0167-9473(91)90115-I [11] NUSSBAUM, M. (1996). Asy mptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430. · Zbl 0867.62035 · doi:10.1214/aos/1032181160 [12] SHORACK, G. R. (1969). Asy mptotic normality of linear combinations of functions of order statistics. Ann. Math. Statist. 40 2041-2050. · Zbl 0188.51002 · doi:10.1214/aoms/1177697284 [13] STONE, C. J. (1990). Large-sample inference for log-spline models. Ann. Statist. 18 717-741. · Zbl 0712.62036 · doi:10.1214/aos/1176347622 [14] STONE, C. J. (1991). Asy mptotics for doubly flexible logspline response models. Ann. Statist. 19 1832-1854. · Zbl 0785.62034 · doi:10.1214/aos/1176348373 [15] TSIATIS, A. A. (1981). A large sample study of Cox’s regression model. Ann. Statist. 9 93-108. · Zbl 0455.62019 · doi:10.1214/aos/1176345335 [16] VAN DER VAART, A. W. and WELLNER, J. A. (1996). Weak Convergence and Empirical Processes. Springer, New York. · Zbl 0862.60002 [17] VARDI, Y. (1985). Empirical distributions in selection bias models (with discussion). Ann. Statist. 13 178-205. · Zbl 0578.62047 · doi:10.1214/aos/1176346585 [18] BERKELEY, CALIFORNIA 94720-3860 E-MAIL: bickel@stat.berkeley.edu DEPARTMENT OF STATISTICS HEBREW UNIVERSITY JERUSALEM 91905 ISRAEL E-MAIL: yaacov@mscc.huji.ac.il This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.