zbMATH — the first resource for mathematics

Numerical solution of the Kiessl model. (English) Zbl 1058.65105
Summary: The Kiessl model of moisture and heat transfer in generally nonhomogeneous porous materials is analyzed. A weak formulation of the problem of propagation of e state parameters of this model, which are so-called moisture potential and temperature, is derived. An application of the method of discretization in time leads to a system of boundary-value problems for coupled pairs of nonlinear second order ODE’s. Some existence and regularity results for these problems are proved and an efficient numerical approach based on a certain special linearization scheme and the Petrov-Galerkin method is suggested.

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76S05 Flows in porous media; filtration; seepage
PDF BibTeX Cite
Full Text: DOI EuDML
[1] J. Appel, P. A. Zabrejko: Nonlinear Superposition Operators. Cambridge tracts inmathematics 95, Cambridge University Press, Cambridge, 1990.
[2] S. Campanato: Sistemi Ellittici in Forma Divergenza. Regolarita all’interno. Quaderni, Pisa, 1980. · Zbl 0453.35026
[3] J. Dalík: A Petrov-Galerkin approximation of convection-diffusion and reaction-diffusion problems. Appl. Math. 36 (1991), 329-352. · Zbl 0748.65061
[4] J. Dalík, J. Daněček, S. Š\?astník: The Kiessl model, existence of the classical solution. Sborník konf. Kočovce (1999), to appear.
[5] J. Dalík, J. Daněček, S. Š\?astník: A model of simultaneous distribution of moisture and temperature in porous materials. Ceramics (Silikáty) 41 (2) (1997), 41-46.
[6] J. Dalík, J. Svoboda, S. Š\?astník: Návrh matematického modelu šíření vlhkosti a tepla v pórovitém prostředí. Preprint (1997).
[7] D. Gawin, P. Baggio, B. A. Schrefler: Modelling heat and moisture transfer in deformable porous building materials. Arch. Civil Eng. XLII, 3 (1996), 325-349.
[8] M. Giaquinta, G. Modica: Local existence for quasilinear parabolic systems under nonlinear boundary conditions. Ann. Mat. Pura Appl. 149 (1987), 41-59. · Zbl 0655.35049
[9] H. Glaser: Graphisches Verfahren zur Untersuchung von Diffusionsvorgängen. Kältetechnik H.10 (1959), 345-349.
[10] J. Kačur: Solution to strongly nonlinear parabolic problems by a linear approximation scheme. Preprint M2-96, Comenius University Bratislava, Faculty of Mathematics and Physics (1996).
[11] K. Kiessl: Kapillarer und dampfförmiger Feuchtetransport in mehrschichtlichen Bauteilen. Dissertation, Universität in Essen (1983).
[12] J. Nečas: Introduction to the theory of nonlinear elliptic equations. Teubner Texte zur Mathematik 52, Teubner Verlag, Leipzig, 1986.
[13] J. R. Philip, D. A. de Vries: Moisture movements in porous materials under temperature gradients. Am. Geophys. Union 38 (1957), 222-232.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.