×

Front propagation in reactive systems with anomalous diffusion. (English) Zbl 1058.80004

Summary: We study front propagation of reactive fields in systems whose diffusive behavior is anomalous (both superdiffusive and subdiffusive). The features of the front propagation depend, not only on the scaling exponent \(\nu (\langle x(t)^2\rangle \sim t^{2\nu})\), but also on the detailed shape of the probability distribution of the diffusive process. From the analysis of different systems we have three possible behavior of front propagation: the usual (Fisher-Kolmogorov like) scenario, i.e., the field has a spatial exponential tail moving with constant speed, \(v_f\), and thickness, \(\lambda\); the field has a spatial exponential tail but \(v_f\) and \(\lambda\) change in time (as a power law); and finally the field has a spatial power law tail and \(v_f\) increases exponentially in time. A linear analysis of the front tail is in quantitative agreement with the numerical simulations. It is remarkable the fact that anomalous diffusion is neither necessary nor sufficient condition for the linear front propagation. Moreover, if the probability distribution of the transport process follows the scaling relation given by the Flory argument, the front propagation is standard (Fisher-Kolmogorov like) even in presence of super (or sub) diffusion.

MSC:

80A30 Chemical kinetics in thermodynamics and heat transfer
82C70 Transport processes in time-dependent statistical mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J.D. Murray, Mathematical Biology, 2nd ed., Springer, Berlin, 1993.; J.D. Murray, Mathematical Biology, 2nd ed., Springer, Berlin, 1993. · Zbl 0779.92001
[2] Xin, J., SIAM Rev., 42, 161 (2000)
[3] Z. Toroczkai, T. Tel (Eds.), Focus Issue: Active Chaotic Flow, Chaos 12 (2002).; Z. Toroczkai, T. Tel (Eds.), Focus Issue: Active Chaotic Flow, Chaos 12 (2002).
[4] Ross, J.; Müller, S. C.; Vidal, C., Science, 240, 460 (1988)
[5] N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000.; N. Peters, Turbulent Combustion, Cambridge University Press, Cambridge, 2000. · Zbl 0955.76002
[6] Abraham, E. R., Nature, 391, 577 (1998)
[7] Fisher, R. A., Ann. Eugenics, 7, 355 (1937)
[8] Ebert, U.; van Saarloos, W., Physica D, 146, 1 (2000)
[9] Constantin, P.; Kiselev, A.; Oberman, A.; Ryzhik, L., Arch. Rat. Mech., 154, 53 (2000)
[10] Kiselev, A.; Ryzhik, L., Ann. I.H. Poincaré, 18, 309 (2001)
[11] Abel, M.; Celani, A.; Vergni, D.; Vulpiani, A., Phys. Rev. E, 64, 46307 (2001)
[12] Bouchaud, J. P.; Georges, A., Phys. Rep., 195, 127 (1990)
[13] Castiglione, P.; Mazzino, A.; Muratore-Ginanneschi, P.; Vulpiani, A., Physica D, 134, 75 (1999)
[14] Zaslavsky, G. M.; Stevens, D.; Weitzener, A., Phys. Rev. E, 48, 1683 (1993)
[15] Klafter, J.; Shlensinger, M. F.; Zumofen, G., Phys. Today, 49, 33 (1996)
[16] Ishizaki, R.; Horita, T.; Kobayashi, T.; Mori, H., Prog. Theoret. Phys., 85, 1013 (1991)
[17] Matheron, G.; De Marsily, G., Water Resour. Res., 16, 901 (1980)
[18] Constantin, P.; Kiselev, A.; Oberman, A.; Ryzhik, L., Arch. Rat. Mech., 154, 53 (2000)
[19] Majda, A. J.; Kramer, P. R., Phys. Rep., 314, 237 (1999)
[20] A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, 2nd ed., Springer, New York, 1991.; A.J. Lichtenberg, M.A. Lieberman, Regular and Chaotic Dynamics, 2nd ed., Springer, New York, 1991. · Zbl 0748.70001
[21] Rechester, A. B.; White, R. B., Phys. Rev. Lett., 44, 1586 (1980)
[22] Cocke, W. J., Phys. Fluids, 12, 2488 (1969)
[23] Richardson, L. P., Proc. R. Soc. London A, 110, 709 (1926)
[24] U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, 1995.; U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge, 1995. · Zbl 0832.76001
[25] Boffetta, G.; Celani, A.; Crisanti, A.; Vulpiani, A., Phys. Rev., 60, 6734 (1999)
[26] Boffetta, G.; Sokolov, I. M., Phys. Fluids, 14, 3224 (2002)
[27] Cassi, D.; Sofia, R., Mod. Phys. Lett. B, 6, 1397 (1992)
[28] O’Shaughnessy, B.; Procaccia, I., Phys. Rev. Lett., 54, 455 (1985)
[29] B. Gnedenko, A.N. Kolmogorov, Limit distribution for Sums of Independent Random Variables, Addison-Wesley, Reading, MA, 1954.; B. Gnedenko, A.N. Kolmogorov, Limit distribution for Sums of Independent Random Variables, Addison-Wesley, Reading, MA, 1954. · Zbl 0056.36001
[30] Fisher, M. E., J. Chem. Phys., 44, 616 (1966)
[31] Moffat, H. K., Rep. Prog. Phys., 46, 621 (1983)
[32] M. Freidlin, Functional Integration and Partial Differential Equations, Princeton University Press, Princeton, NJ, 1985.; M. Freidlin, Functional Integration and Partial Differential Equations, Princeton University Press, Princeton, NJ, 1985. · Zbl 0568.60057
[33] Biferale, L.; Crisanti, A.; Vergassola, M.; Vulpiani, A., Phys. Fluids, 7, 2725 (1995)
[34] Avellaneda, M.; Majda, A., Commun. Math. Phys., 138, 339 (1991)
[35] Avellaneda, M.; Vergassola, M., Phys. Rev. E, 52, 3249 (1995)
[36] Constantin, P.; Kiselev, A.; Ryzhik, L., Commun. Pure Appl. Math., 54, 1320 (2001)
[37] A. Okubo, S.A. Levin, Diffusion and Ecological Problems, Springer, New York, 2001.; A. Okubo, S.A. Levin, Diffusion and Ecological Problems, Springer, New York, 2001. · Zbl 1027.92022
[38] Mancinelli, R.; Vergni, D.; Vulpiani, A., Eur. Lett., 60, 532 (2002)
[39] Paladin, G.; Vulpiani, A., J. Phys. A, 27, 4911 (1994)
[40] D. del Castillo Negrete, B.A. Carreras, V. Lynch, Phys. Rev. Lett. 91 (2003) 018302.; D. del Castillo Negrete, B.A. Carreras, V. Lynch, Phys. Rev. Lett. 91 (2003) 018302.
[41] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes, Cambridge University Press, Cambridge, 1994.; W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes, Cambridge University Press, Cambridge, 1994. · Zbl 0727.65001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.