zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Globally conformal invariant gauge field theory with rational correlation functions. (English) Zbl 1058.81054
Summary: Operator product expansions (OPE) for the product of a scalar field with its conjugate are presented as infinite sums of bilocal fields $V_{\kappa}(x_1,x_2)$ of dimension $(\kappa,\kappa)$. For a globally conformal invariant (GCI) theory we write down the OPE of $V_{\kappa}$ into a series of twist (dimension minus rank) $2\kappa$ symmetric traceless tensor fields with coefficients computed from the (rational) 4-point function of the scalar field.We argue that the theory of a GCI hermitian scalar field $L(x)$ of dimension 4 in $D=4$ Minkowski space such that the 3-point functions of a pair of $L$’s and a scalar field of dimension 2 or 4 vanish can be interpreted as the theory of local observables of a conformally invariant fixed point in a gauge theory with Lagrangian density $L(x)$.

81T13Yang-Mills and other gauge theories
81T40Two-dimensional field theories, conformal field theories, etc.
Full Text: DOI
[1] Arutyunov, G.; Eden, B.; Petkou, A. C.; Sokatchev, E.: Exceptional non-renormalization properties and OPE analysis of chiral 4-point functions in N=4SYM4. Nucl. phys. B 620, 380-404 (2002) · Zbl 0982.81049
[2] Bargmann, V.; Todorov, I. T.: Spaces of analytic functions on the complex cone as carriers for the symmetric tensor representations of $SO(n)$. J. math. Phys. 18, 1141-1148 (1977) · Zbl 0364.46016
[3] Beisert, N.; Kristensen, C.; Staudacher, M.: The dilation operator of conformal N=4 super-Yang--Mills theory
[4] Bianchi, M.; Kovacs, S.; Rossi, G.; Stanev, Ya.S.: Properties of Konishi multiplet in N=4 SYM theory. Jhep 0105, 042 (2001)
[5] Bogolubov, N. N.; Logunov, A. A.; Oksak, A. I.; Todorov, I. T.: General principles of quantum field theory. (1990)
[6] Cunningham, E.: The principle of relativity in electrodynamics and an extension thereof. Proc. London math. Soc. 8, 77-98 (1910)
[7] Di Francesco, P.; Mathieu, P.; Senechal, D.: Conformal field theories. (1996)
[8] Dirac, P. A. M.: Wave equations in conformal space. Ann. math. 37, 429-442 (1936) · Zbl 0014.08004
[9] Dobrev, V. K.; Mack, G.; Petkova, V. B.; Petrova, S. G.; Todorov, I. T.: Harmonic analysis of the n-dimensional Lorentz group and its application to conformal quantum field theory. (1977) · Zbl 0407.43010
[10] Dolan, F. A.; Osborn, H.: Conformal four point functions and operator product expansion. Nucl. phys. B 599, 459-496 (2001) · Zbl 1097.81734
[11] Eden, B.; Petkou, A. C.; Schubert, C.; Sokatchev, E.: Partial nonrenormalization of the stress-tensor four-point function in N=4 SYM and AdS/CFT. Nucl. phys. B 607, 191-212 (2001) · Zbl 0969.81576
[12] Faddeev, L. D.: Mass in quantum Yang--Mills theory (comment on a Clay millenium problem). Bull. braz. Math. soc. 33, 201-212 (2002) · Zbl 1033.81056
[13] Ferrara, S.; Gatto, R.; Grillo, A.; Parisi, G.: The shadow operator formalism for conformal algebra vacuum expectation values and operator products. Nuovo cimento lett. 4, 115-120 (1972)
[14] Fradkin, E. S.; Palchik, M. Ya.: Conformal quantum field theory in D dimensions. (1996) · Zbl 0896.70001
[15] Furlan, P.; Sotkov, G. M.; Todorov, I. T.: Two-dimensional conformal quantum field theory. Riv. nuovo cimento 12, No. 6, 1-202 (1989)
[16] Haag, R.: Local quantum physics, fields, particles, algebras. (1992) · Zbl 0777.46037
[17] Mack, G.: All unitary representations of the conformal group $SU(2,2)$ with positive energy. Commun. math. Phys. 55, 1-28 (1977) · Zbl 0352.22012
[18] Mack, G.; Symanzik, K.: Currents, stress tensor and generalized unitarity in conformal invariant quantum field theory. Commun. math. Phys. 27, 247-281 (1972)
[19] Nikolov, N. M.; Todorov, I. T.: Rationality of conformally invariant local correlation functions on compactified Minkowski space. Commun. math. Phys. 218, 417-436 (2001) · Zbl 0985.81055
[20] Nikolov, N. M.; Stanev, Ya.S.; Todorov, I. T.: Four-dimensional CFT models with rational correlation functions. J. phys. A: math. Gen. 35, 2985-3007 (2002) · Zbl 1041.81097
[21] Nikolov, N. M.; Stanev, Ya.S.; Todorov, I. T.: Global conformal invariance and bilocal fields with rational correlation functions. 256-268 (2002)
[22] Osborn, H.; Petkou, A.: Implications of conformal invariance for field theories in general dimensions. Ann. phys. (N.Y.) 231, 311-362 (1994) · Zbl 0795.53073
[23] Segal, I. E.: Causally oriented manifolds and groups. Bull. amer. Math. soc. 77, 958-959 (1971) · Zbl 0242.53009
[24] Streater, R. F.; Wightman, A. S.: PCT, spin and statistics, and all that. (1964) · Zbl 0135.44305
[25] Todorov, I. T.: Local field representations of the conformal group and their applications. Lectures on recent results 1, 195-338 (1985)
[26] Todorov, I. T.: Infinite-dimensional Lie algebras in conformal QFT models. Lecture notes in physics 261, 387-443 (1986)
[27] Todorov, I. T.; Mintchev, M. C.; Petkova, V. B.: Conformal invariance in quantum field theory. (1978) · Zbl 0438.22011
[28] Uhlmann, A.: The closure of Minkowski space. Acta phys. Pol 24, 295-296 (1963) · Zbl 0115.42303
[29] Wilson, K. G.: Operator product expansions and anomalous dimensions in the Thirring model. Phys. rev. D 2, 1473-1477 (1970)
[30] Witten, E.: Physical laws and the quest of mathematical understanding. Bull. amer. Math. soc. 40, 21-29 (2003) · Zbl 1014.81039