zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Jackson’s pseudo-preemptive schedule and cumulative scheduling problems. (English) Zbl 1058.90023
Summary: The aim of this paper is to show the usefulness of the Jackson’s pseudo-preemptive schedule (JPPS) for solving cumulative scheduling problems. JPPS was introduced for the $m$-processor scheduling problem $Pm/r_i, q_i/C_{\max}$. In the latter problem, a set $I$ of $n$ operations has to be scheduled without preemption on $m$ identical processors in order to minimize the makespan. Each operation $i$ has a release date (or head) $r_i$, a processing time $p_i$, and a tail $q_i$. In the cumulative scheduling problem (CuSP), an operation $i$ requires a constant amount $e_i$ of processors throughout its processing. A CuSP is obtained, for instance, from the resource constrained project scheduling problem (RCPSP) by choosing a resource and relaxing the constraints induced by the other resources. We state new properties on JPPS and we show that it can be used for studying the CuSP and for performing adjustments of heads and tails using a strategy very close to the one designed by Carlier and Pinson for the $1/r_i$, $q_i/C_{\max}$ sequencing problem. It confirms the interest of JPPS for solving RCPSP.

MSC:
90B35Scheduling theory, deterministic
WorldCat.org
Full Text: DOI
References:
[1] Balas, E.: Machine sequencing via disjunctive graphsan implicit enumeration algorithm. Oper. res 17, 941-957 (1969) · Zbl 0183.49404
[2] Baptiste, P.; Le Pape, C.; Nuijten, W.: Satifiability tests and time-bound adjustments for cumulative scheduling problems. Ann. oper. Res 92, 305-333 (1999) · Zbl 0958.90037
[3] Brucker, P.; Jurisch, B.; Krämer, A.: The job-shop and immediate selections. Ann. oper. Res 50, 93-114 (1992) · Zbl 0826.90062
[4] Brucker, P.; Jurisch, B.; Sievers, B.: A branch & bound algorithm for the job-shop scheduling problem. Discrete appl. Math 49, 109-127 (1994) · Zbl 0802.90057
[5] Carlier, J.: The one-machine sequencing problem. European J. Oper. res 11, 42-47 (1982) · Zbl 0482.90045
[6] J. Carlier, Problèmes d’ordonnancements á contraintes de ressources: algorithmes et complexité, Thèse d’état, Université Paris VI, 1984.
[7] Carlier, J.: Scheduling jobs with release dates and tails on identical machines to minimize makespan. European J. Oper. res 29, 298-306 (1987) · Zbl 0622.90049
[8] Carlier, J.; Latapie, B.: Une méthode arborescente pour résoudre LES problèmes cumulatifs. Rairo 25, No. 3, 311-340 (1991) · Zbl 0733.90036
[9] Carlier, J.; Pinson, E.: An algorithm for solving the job shop problem. Management sci 35, 164-176 (1989) · Zbl 0677.90036
[10] Carlier, J.; Pinson, E.: A practical use of Jackson’s preemptive schedule for solving the job-shop problem. Ann. oper. Res 26, 269-287 (1991) · Zbl 0709.90061
[11] Carlier, J.; Pinson, E.: Adjusting heads and tails for the job-shop problem. European J. Oper. res 78, 146-161 (1994) · Zbl 0812.90063
[12] Carlier, J.; Pinson, E.: Jackson’s pseudo preemptive schedule for the pm/ri, qi/cmax scheduling problem. Ann. oper. Res 83, 41-58 (1998) · Zbl 0911.90203
[13] Coffman, E. G.; Muntz, R. R.: Preemptive scheduling on two-processor systems. IEEE trans. Comput 18, 1014-1020 (1970) · Zbl 0184.20504
[14] Demeulemeester, E.; Herroelen, W.: A branch and bound procedure for the multiple resource-constrained project scheduling problem. Management sci 38, 1803-1818 (1992) · Zbl 0761.90059
[15] Demeulemeester, E.; Herroelen, W.: Recent advances in branch and bound procedures for resource-constrained project scheduling problems. Scheduling theory and its applications (1995)
[16] H. Hoogeven, C. Hurkens, J.K. Lenstra, A. Vandevelde, Lower bounds for the multiprocessor flow shop, Second Workshop on Models and Algorithms for Planning and Scheduling, Wernigerode, May 22--26, 1995.
[17] Horn, W.: Some simple scheduling algorithms. Naval. res. Logist. quart 21, 177-185 (1974) · Zbl 0276.90024
[18] J.R. Jackson, Scheduling a production line to minimize maximum tardiness, Research Report 43, Management Science Research Project, University of California, Los Angeles, 1955.
[19] J. Labetoulle, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, Preemptive scheduling of uniform machines subject to release dates, Progress in Combinatorial Optimization, Academic Press, Florida, 1984, pp. 245--261. · Zbl 0554.90059
[20] Lageweg, B. J.; Lenstra, J. K.; Kan, A. H. G. Rinnooy: Minimizing maximum lateness on one machinecomputational experience and some applications. Statist. neerlandica 30, 25-41 (1976) · Zbl 0336.90029
[21] Lawler, E. L.: Preemptive scheduling of precedence constrainted jobs on parallel machines. Deterministic and stochastic scheduling, 101-123 (1982) · Zbl 0495.68031
[22] Liu, Z.; Sanlaville, E.: Profile scheduling by list algorithms. Scheduling theory and its applications (1995) · Zbl 0833.90071
[23] E. Néron, Du flow-shop hybride au problème cumulatif, Thèse de l’Université de Technologie de Compiégne, 1999.
[24] Pinson, E.: The job shop scheduling problem : a concise survey and recent developments. Scheduling theory and its applications (1995)
[25] Sanlaville, E.: Nearly on line scheduling of preemptive independent tasks. Discrete appl. Math 57, 229-241 (1995) · Zbl 0830.68011