Moh, Tzuong Tsieng An application of algebraic geometry to encryption: tame transformation method. (English) Zbl 1058.94012 Rev. Mat. Iberoam. 19, No. 2, 667-685 (2003). The author employs the notion of tame transformations to produce a public-key cryptosystem having algebraic geometric notions at its foundation. Unfortunately, the paper suffers for rather poor use of the English language. Reviewer: Richard A. Mollin (Calgary) Cited in 1 ReviewCited in 5 Documents MSC: 94A60 Cryptography 14R10 Affine spaces (automorphisms, embeddings, exotic structures, cancellation problem) 68P25 Data encryption (aspects in computer science) Keywords:tame ramification; public-key cipher; cryptology; error detection PDFBibTeX XMLCite \textit{T. T. Moh}, Rev. Mat. Iberoam. 19, No. 2, 667--685 (2003; Zbl 1058.94012) Full Text: DOI EuDML References: [1] Abhyankar, S. S. and Moh, T.: Embeddings of the line in the plane. J. Reine Angew. Math. 276 (1975), 148-166. · Zbl 0332.14004 [2] Bajaj, C., Garrity, T. and Warren, J.: On the Application of Multi- Equational Resultants. Purdue University, Dept of C. S. Technical Report CSD-TR-826, 1988. [3] Bass, H., Connell, E. H. and Wright, D.L.: The Jacobian conjecture: reduction of degree and formal expansion of the inverse. Bull. Amer. Math. Soc. 7 (1983), no. 2, 287-330. · Zbl 0539.13012 · doi:10.1090/S0273-0979-1982-15032-7 [4] Berlekamp, E. R.: Factoring polynomials over finite fields. Bell System Tech. J. 46 (1967), 1853-1859. · Zbl 0166.04901 [5] Brandstrom, H.: A public-key cryptosystem based upon equations over a finite field. Cryptologia 7 (1983), 347-358. · Zbl 0537.94014 · doi:10.1080/0161-118391858071 [6] Brent, R. and Kung, H.: Fast Algorithms for Manipulating Formal Power Series. J. Assoc. Comput. Mach. 25 (1978), no. 4, 581-595. · Zbl 0388.68052 · doi:10.1145/322092.322099 [7] Cohen, H.: A Course in Computational Algebraic Number Theory. Springer-Verlag, Berlin, 1993. · Zbl 0786.11071 [8] Courtois, N., Shamir, A., Patarin, J. and Klimov, A.: Efficient al- gorithms for solving overdefined systems of multivariate polynomial equa- tions. In Advances in cryptology -EUROCRYPT 2000 (Bruges), 392-407. Lecture Notes in Comput. Sci. 1807, Springer, Berlin, 2000. T. Moh · Zbl 1082.94514 [9] Canny, John F.: Complexity of Robot Motion Planning. The MIT Press, Cambridge, Massachusetts, 1988. · Zbl 0668.14016 [10] Dickerson, M.: The inverse of an Automorphism in Polynomial Time. J. Symbolic Comput. 13 (1992), 209-220. · Zbl 0805.13006 · doi:10.1016/S0747-7171(08)80090-9 [11] Von zur Gathen, J.: Functional decomposition of polynomials: the tame case. J. Symbolic Comput. 9 (1990), 281-299. · Zbl 0716.68053 · doi:10.1016/S0747-7171(08)80014-4 [12] Von zur Gathen, J.: Functional decomposition of polynomials: the wild case. J. Symbolic Comput. 10 (1990), 437-452. · Zbl 0722.12003 · doi:10.1016/S0747-7171(08)80054-5 [13] Goubin, L. and Courtois, N. T.: Cryptanalysis of the TTM cryptosys- tem. In Advances in cryptology -ASIACRYPT 2000 (Kyoto), 44-57. Lec- ture Notes in Comput. Sci. 1976, Springer, Berlin, 2000. · Zbl 0980.94017 [14] Imai, H. and Matsumoto, T.: Algebraic methods for constructing asym- metric cryptosystems. In Algebraic algorithms and error correcting codes (Grenoble, 1985), 108-119. Lecture Notes in Comput. Sci. 229, Springer, Berlin, 1986. [15] Van der Kulk, W.: On polynomial rings in two variables, Nieuw Arch. Wiskunde (3) 1 (1953), 33-41. · Zbl 0050.26002 [16] Lidl, R. and Niederreiter, H.: Finite fields. Encyclopedia of Mathe- matics and its Applications 20. Addison-Wesley Pub. Co., Reading, Mas- sachusetts, 1983. [17] Lidl, R.: On cryptosystems based on polynomials and finite fields. In Advances in cryptology (Paris, 1984), 10-15. Lecture Notes in Comput. Sci. 209, Springer, Berlin, 1985. · Zbl 0596.94017 · doi:10.1007/3-540-39757-4_2 [18] Lucier, B.: Cryptography, Finite Fields, and AltiVec. www.simtech.org/ apps/group public/download.php/22/Cryptography.pdf [19] Moh, T.: On the Classification Problem of Embedded Lines in Character- istic p. In Algebraic Geometry and Commutative Algebra (in honor of M. Nagata), vol I, 267-280, Kinokuniya, Kyoto, Japan, 1988. [20] Moh, T.: A Public Key System with Signature and Master Key Functions. Comm. Algebra 27 (1999), no. 5, 2207-2222. · Zbl 0933.94022 · doi:10.1080/00927879908826559 [21] Moh, T.: A Fast Public Key System With Signature And Master Key Functions. In Cryptographic Techniques and E-Commerce, Proceedings of the 1999 International Workshop on Cryptographic Techniques and E- Commerce (CrypTEC ’99). City University of Hong Kong Press, July, 1999. · Zbl 0933.94022 · doi:10.1080/00927879908826559 [22] Moh, T.: On the Method of XL and its Inefficiency against TTM. http://www.usdsi.com/ttm.html. [23] Moh, T.: On the the Goubin-Courtois Attack on TTM. “Cryptology ePrint Archive”, http://eprint.iacr.org/2001/072 . A copy can also be ob- tained at http://www.usdsi.com/ttm.html. 685 [24] Nagata, M: On the automorphism group of K[X, Y ]. Lectures in Mathe- matics 5. Kinokuniya, Tokyo, Japan, 1972. · Zbl 0306.14001 [25] Niederreiter, H.: New deterministic factorization algorithms for polyno- mials over finite fields. In Finite fields: theory, applications, and algorithms (Las Vegas, NV, 1993), 251-268, Contemp. Math. 168, Amer. Math. Soc., Providence, RI, 1994. · Zbl 0822.11083 [26] Patarin, J.: Cryptanalysis of the Matsumoto and Imai public key scheme of Eurocrypt ’88. In Advances in cryptology -CRYPTO ’95 (Santa Bar- bara, CA, 1995), 248-261. Lecture Notes in Comput. Sci. 963, Springer, Berlin, 1995. · Zbl 0868.94025 [27] Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polyno- mials (IP): two new families of asymmetric algorithms. In Advances in cryp- tology -EUROCRYPT 1996 (Zaragoza), 33-48. Lecture Notes in Comput. Sci. 1070 Springer-Verlag, 1996. · Zbl 1301.94125 · doi:10.1007/3-540-68339-9_4 [28] Rivest, R. L., Shamir, A. and Adleman, L. M.: A Method for Ob- taining Digital Signatures and Public Key Cryptosystems. Comm. ACM 21 (1978), no. 2, 120-126. · Zbl 0368.94005 · doi:10.1145/359340.359342 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.