×

Remembering Oscar Kempthorne (1919–2000). (English) Zbl 1059.01533

MSC:

01A70 Biographies, obituaries, personalia, bibliographies

Keywords:

Obituary

Biographic References:

Kempthorne, O.
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Addelman, S. and Kempthorne, O. (1961). Some main-effect plans andorthogonal arrays of strength two. Ann. Math. Statist. 32 1167-1176. · Zbl 0107.36001
[2] Bailey, R. A. (1991). Strata for randomized experiments. J. Roy. Statist. Soc. Ser. B 53 27-78. JSTOR: · Zbl 0800.62477
[3] Bancroft, T. A. (1984). The years 1950-1972. In Experimental Design, Statistical Models, and Genetic Statistics-Essays in Honor of Oscar Kempthorne (K. Hinkelmann, ed.) 3-7. Dekker, New York.
[4] Berkson, J. (1978). In dispraise of the exact test. J. Statist. Plann. Inference 2 27-42. · Zbl 0374.62029
[5] Burt, C. and Howard, M. (1956). The multifactorial theory of inheritance andits application to intelligence. British J. Statist. Psychology 9 95-131.
[6] Calinski, T. and Kageyama, S. (2000). Block Designs: A Randomization Approach. 1: Analysis. Springer, New York. · Zbl 1108.62318
[7] Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: a review. Statist. Sci. 10 273-304. · Zbl 0955.62617
[8] Charlesworth, B. (1994). Evolution in Age-Structured Populations, 2nd ed. Cambridge Univ. Press. · Zbl 0811.92016
[9] David, H. A. (1984). The years 1972-1984. In Experimental Design, Statistical Models, and Genetic Statistics-Essays in Honor of Oscar Kempthorne (K. Hinkelmann, ed.) 9-13. Dekker, New York.
[10] David, H. A. (1995). First (?) occurrence of common terms in mathematical statistics. Amer. Statist. 49 121-133. Devlin, B., Fienberg, S. E., Resnick, D. P. and Roeder, K. (eds.)
[11] . Intelligence, Genes, and Success: Scientists Respond to The Bell Curve. Springer, New York.
[12] Easterling, R. G. (1976). Goodness of fit and parameter estimation. Technometrics 18 1-9. · Zbl 0322.62035
[13] Emigh, T. H. (1977). Partition of the phenotypic variance under unknown dependent association of genotypes and environments. Biometrics 33 505-514. · Zbl 0371.92020
[14] Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Trans. Roy. Soc. Edinb. 52 399-433.
[15] Fisher, R. A. (1930). The Genetical Theory of Natural Selection. Clarendon, Oxford. · JFM 56.1106.13
[16] Fisher, R. A. (1935). The Design of Experiments. Oliver andBoyd, Edinburgh. · Zbl 0011.03205
[17] Fisher, R. A. (1956). Statistical Methods and Scientific Inference. Oliver and Boyd, Edinburgh. · Zbl 0070.36903
[18] Folks, J. L. (1995). A conversation with Oscar Kempthorne. Statist. Sci. 10 321-336.
[19] Fontdevila, A. (1995). Genetics andecology of natural populations. In Genetics of Natural Populations (L. Levine, ed.) 198-221. Columbia Univ. Press.
[20] Galton, F. (1869). Hereditary Genius: An Inquiry into Its Laws and Consequences. Macmillan, London.
[21] Good, I. J. (1956). Which comes first, probability or statistics? J. Inst. Actuaries 82 249-255 [reprintedin Good Thinking by I. J. Good(1983) 59-62]. · Zbl 0070.13301
[22] Grignola, F. and Hoeschele, I. (1997). Mapping linkedquantitative trait loci via residual maximum likelihood. Genet. Sel. Evol. 29 529-544.
[23] Guo, S. (1995). Proportion of genome shared identical by descent by relatives: concept, computation, andapplications. Amer. J. Human Genetics 56 1468-1476.
[24] Harville, D. A. (1975). Experimental randomization: Who needs it? Amer. Statist. 29 27-31. JSTOR: · Zbl 0361.62071
[25] Herrnstein, R. J. and Murray, C. (1994). The Bell Curve: Intelligence and Class Structure in American Life. Free Press, New York. Hinkelmann, K. (1963a). Design andanalysis of multi-way genetic cross experiments. Ph.D. dissertation, Iowa State Univ. Hinkelmann, K. (1963b). A commonly occurring incomplete multiple classification model. Biometrics 19 105-117.
[26] Hinkelmann, K. (1997). The Kempthorne-parametrization for asymmetrical factorials. Technical Report 97-7, Virginia Polytechnic Inst. andState Univ.
[27] Hinkelmann, K. (2000). Statistics as a science, art, andpower-a personal account. Technical Report 00-2, Virginia Polytechnic Inst. andState Univ.
[28] Hinkelmann, K. and Alcorn, J. S. (1998). Randomization analysis of replicatedcomplete block designs. J. Comb. Info. Systems Science 23 317-332. · Zbl 1217.62110
[29] Hinkelmann, K. and Kempthorne, O. (1963). Two classes of group divisible partial diallel crosses. Biometrika 50 281-291. JSTOR: · Zbl 0122.37706
[30] Hinkelmann, K. and Kempthorne, O. (1994). Design and Analysis of Experiments. 1: Introduction to Experimental Design. Wiley, New York. · Zbl 1146.62054
[31] Hinkelmann, K. and Stern, K. (1960). Kreuzungspläne zur Selektionsz üchtung bei Waldbäumen. Silv. Genet. 9 121-133.
[32] Jensen, A. (1969). How much can we boost IQ andscholastic achievement? Harvard Educ. Rev. 39 1-123.
[33] Kempthorne, O. (1947). A simple approach to confounding and fractional replication in factorial experiments. Biometrika 34 255-272. JSTOR: · Zbl 0029.30901
[34] Kempthorne, O. (1952). Design and Analysis of Experiments. Wiley, New York. · Zbl 0049.09901
[35] Kempthorne, O. (1953). A class of experimental designs using blocks of two plots. Ann. Math. Statist. 24 76-84. Kempthorne, O. (1955a). The randomization theory of experimental inference. J. Amer. Statist. Assoc. 50 946-967. Kempthorne, O. (1955b). The correlations between relatives in random mating populations. Cold Spring Harbor Symposia on Quantitative Biology 22 60-78. · Zbl 0050.14603
[36] Kempthorne, O. (1957). An Introduction to Genetic Statistics. Wiley, New York. · Zbl 0083.15203
[37] Kempthorne, O. (1966). Some aspects of experimental inference. J. Amer. Statist. Assoc. 61 11-34. JSTOR:
[38] Kempthorne, O. (1972). Theories of inference anddata analysis. In Statistical Papers in Honor of George W. Snedecor (T. A. Bancroft, ed.) 167-191. Iowa State Univ. Press, Ames. · Zbl 0241.62001
[39] Kempthorne, O. (1975). Inference from experiments andrandomization. In A Survey of Statistical Design and Linear Models (J. N. Srivastava, ed.) 303-331. North-Holland, Amsterdam. Kempthorne, O. (1976a). Of what use are tests of significance andtests of hypothesis? Comm. Statist. Theory Methods 5 763-777. Kempthorne, O. (1976b). Discussion of ”On rereading R. A. Fisher.” Ann. Statist. 4 495-497.
[40] Kempthorne, O. (1977). Why randomize? J. Statist. Plann. Inference 1 1-25. · Zbl 0404.62052
[41] Kempthorne, O. (1978). Logical, epistemological andstatistical aspects of nature-nurture data interpretation. Biometrics 34 1-23. JSTOR:
[42] Kempthorne, O. (1979). In dispraise of the exact test: reactions. J. Statist. Plann. Inference 3 199-213. Kempthorne, O. (1984a). Statistical methods and science. In W. G. Cochran’s Impact on Statistics (P. S. R. S. Rao and J. Sedransk, eds.) 287-308. Wiley, New York. Kempthorne, O. (1984b). Science, statistics, andphilosophy. Unpublishednotes of colloquium presentedat Virginia Polytechnic Institute andState Univ. Kempthorne, O. (1984c). Revisiting the past andanticipating the future. In Statistics: An Appraisal (H. A. Davidand H. T. David, eds.) 31-52. Iowa State Univ. Press, Ames.
[43] Kempthorne, O. (1990). How does one apply statistical analysis to our understanding of the development of human relationships? Behav. Brain Sciences 13 138-139.
[44] Kempthorne, O. and Curnow, R. N. (1961). The partial diallel cross. Biometrics 17 229-250. JSTOR: · Zbl 0097.14404
[45] Kempthorne, O. and Folks, J. L. (1971). Probability, Statistics, and Data Analysis. Iowa State Univ. Press, Ames. · Zbl 0245.62004
[46] Kempthorne, O. and Pollak, E. (1970). Concepts of fitness in Mendelian populations. Genetics 64 125-145.
[47] Kimura, M. (1958). On the change of population fitness by natural selection. Heredity 12 145-167. Kincheloe, J. L., Steinberg, S. R. and Gresson A. D., III. (eds.)
[48] . Measured Lies: The Bell Curve Examined. St. Martins Press, New York.
[49] Lindley, D. V. and Novick, M. R. (1981). The role of exchangeability in inference. Ann. Statist. 9 45-58. · Zbl 0473.62005
[50] Malécot, G. (1948). Les mathématiques de l’hérédité. Masson et Cie., Paris. · Zbl 0031.17304
[51] Matzinger, D. F. and Kempthorne, O. (1956). The modified diallel table with partial inbreeding and interactions with environment. Genetics 41 822-833.
[52] Nagylaki, T. (1992). An Introduction to Theoretical Population Genetics. Springer, Berlin. Nelder, J. A. (1965a). The analysis of randomized experiments with orthogonal block structure. I. Block structure andthe null analysis of variance. Proc. Roy. Soc. London Ser. A 283 147-162. Nelder, J. A. (1965b). The analysis of randomized experiments with orthogonal block structure. II. Treatment structure and the general analysis of variance. Proc. Roy. Soc. London Ser. A 283 163-178. · Zbl 0839.92011
[53] Neyman, J. and Pearson, E. S. (1928). On the use andinterpretation of certain test criteria for purposes of statistical inference. Biometrika 20 A 175-240, 263-294. · JFM 54.0565.05
[54] Pollak, E. and Kempthorne, O. (1970). Malthusian parameters in genetic populations. I. Haploidandselfing models. Theoret. Population Biol. 1 315-345. · Zbl 0241.92014
[55] Pollak, E. and Kempthorne, O. (1971). Malthusian parameters in genetic populations. II. Random mating populations in infinite habitats. Theoret Population Biol. 2 357-390. · Zbl 0241.92015
[56] Savage, L. J. (1976). On rereading R. A. Fisher (with discussion). Ann. Statist. 4 441-500. · Zbl 0325.62008
[57] Smith, J. M. (1998). Evolutionary Genetics, 2nded. OxfordUniv. Press. · Zbl 0899.00026
[58] van Aarde, I. M. R. (1975). The covariance of relatives derived from a random mating population. Theoret Population Biol. 8 166-183. · Zbl 0322.92021
[59] Wald, A. (1939). Contribution to the theory of statistical estimation andtesting hypotheses. Ann. Math. Statist. 10 299-326. Wang, T., Fernando, R. L., van der Beek, S. and van Arendonk, · Zbl 0024.05405
[60] J. A. M. (1995). Covariance between relatives for a marked quantitative trait locus. Genet. Sel. Evol. 27 251-275.
[61] White, R. F. (1975). Randomization and the analysis of variance. Biometrics 31 555-571. JSTOR: · Zbl 0307.62054
[62] Wilk, M. B. (1955). The randomization analysis of a general randomized block design. Biometrika 42 70-79. JSTOR: · Zbl 0065.12003
[63] Wilk, M. B. and Kempthorne, O. (1955). Fixed, mixed, and random models. J. Amer. Statist. Assoc. 50 1144-1167. · Zbl 0066.38201
[64] Wu, C. F. J. and Hamada, M. (2000). Experiments-Planning, Analysis, and Parameter Design Optimization. Wiley, New York. · Zbl 0964.62065
[65] Yates, F. (1935). Complex experiments. J. Roy. Statist. Soc. Suppl. 2 181-247.
[66] Yates, F. (1939). The comparative advantages of systematic and randomized arrangements in the design of agricultural and biological experiments. Biometrika 30 440-466. · JFM 65.0591.03
[67] Zyskind, G. (1962). On structure, relation, andexpectation of mean squares. Sankhy \?a A 24 115-148. · Zbl 0105.33503
[68] Zyskind, G. (1963). Some consequences of randomization in a generalization of the balancedincomplete block design. Ann. Math. Statist. 34 1569-1581. · Zbl 0122.36805
[69] Design and Analysis of Experiments. Kempthorne. O. (1952). Wiley, New York. Statistics and Mathematics in Biology. Kempthorne, O., · Zbl 0049.09901
[70] Bancroft, T. A., Gowen, J. W. and Lush, J. L. (eds.). (1954). Iowa State College Press, Ames. · Zbl 0058.35902
[71] An Introduction to Genetic Statistics. Kempthorne, O. (1957). Wiley, New York.
[72] Biometrical Genetics. Kempthorne, O. (ed.). (1960). Pergamon Press, New York. Probability, Statistics, and Data Analysis. Kempthorne, O. and Folks, J. L. (1971). Iowa State Univ. Press, Ames. Proceedings of the International Conference on Quantitative Genetics. Pollak, E., Kempthorne, O. and Bailey, T. B., Jr.
[73] . (1977). Iowa State Univ. Press, Ames. Design and Analysis of Experiments. 1: Introduction to Experi mental Design. Hinkelmann, K. and Kempthorne, O. (1994). Wiley, New York. · Zbl 1146.62054
[74] iments (with Wilk, M. B.). (1956). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (WADC 55-244). Treatments errors in comparative experiments (with Zyskind,
[75] G.). (1960). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (WADC 59-19). Some properties of steepest ascent andrelatedprocedures for finding optimum conditions (with Buehler, R. J. and Shah,
[76] B. V.). (1961). Technical Report 1, ONR (NR-042-207). Some further properties of the methodof parallel tangents and conjugate gradients (with Buehler, R. J. and Shah, B. V.).
[77] . Technical Report 3, ONR (NR-042-207).
[78] Orthogonal main-effect plans (with Addelman, S.). (1961). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL-79). Analysis of variance procedures (with Zyskind, G., Addelman, S.,
[79] Throckmorton, T. N. and White, R. F.). (1961). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL-149). Components of variance for theoretical models of quantitative gene action (with Hill, W. G. and Hinkelmann, K.). (1963). NSF Grant 19218. Some aspects of constrainedrandomization (with Sutter, G.
[80] J. and Zyskind, G.). (1963). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL 63-18). The compounding of gradient error in the method of parallel tan gents (with Doerfler, T. E.). (1963). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL 63-144). Research on analysis of variance andrelatedtopics (with Zyskind, G., White, R. F., Dayhoff, E. E. and Doerfler, T. E.). (1964). Aerospace Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL 64-193). Research on analysis of variance anddata interpretation (with Zyskind, G., Basson, R. P., Martin, F. B., Doerfler, T. E.
[81] and Carney, E. J.). (1966). Aerospace Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL
[82] -0240). Linear models and analysis of variance research procedures (with Zyskind, G., Martin, F. B., Carney, E. J. and West, E. N.). · Zbl 0198.51403
[83] . Aerospace Research Lab., U.S. Air Force, Wright Patterson Air Force Base, Ohio (ARL 68-0119). Parallel tangents andsteepest descent optimization algorithmA computer implementation with applications to partially linear models (with Papaioannou, T.). (1970). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL 70-0117). On statistical information theory andrelate measures of informa tion (with Papaioannou, T.) (1971). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio
[84] . Linear models, statistical information and statistical inference (with Zyskind, G., Mexas, A., Papaioannou, T and Seely, J.). (1971). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL 71-0076). The behaviour of some significance tests under experimental randomization (with Doerfler, T. E.). (1971). Aeronautical Research Lab., U.S. Air Force, Wright-Patterson Air Force Base, Ohio (ARL 71-156).
[85] LI, C. C.: Path Analysis-A Primer. J. Heredity 68 (1977) 270-271. Roughgarden, J.: Theory of Population Genetics and Evolutionary Ecology: An Introduction. Nature 288 (1980) 628-628. Thompson, J. N., Jr. and Thoday, J. M. (eds.): Quantitative Genetic Variation. Social Biology 27 (1980) 241-246. Edgington, E. S. (ed.): Randomization Tests. Biometrics 38 (1982) 864-867. Fienberg, S. E. and Hinkley, D. V. (eds.): R. A. FisherAn Appreciation. J. Amer. Statist. Assoc. 78 (1983) 482-490. Koopmans, L. H.: An Introduction to Contemporary Statistics. J. Amer. Statist. Assoc. 79 (1984) 228-229 (with Stephenson, W. R.). Koopmans, L. H.: An Introduction to Contemporary Statistics, 2nded. J. Amer. Statist. Assoc. 84 (1989) 836-837 (with Stephenson, W. R.). Searle, S. R.: Linear Models for Unbalanced Data. Amer. Scientist 77 (1989) 404-405.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.