×

A conversation with Lucien Le Cam. (English) Zbl 1059.01548


MSC:

01A70 Biographies, obituaries, personalia, bibliographies

Keywords:

Interview

Biographic References:

Le Cam, Lucien
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albers, D. J., Alexanderson, G. L. and Reid, C., eds. (1990). More Mathematical People. Harcourt Brace Jovanovich, New York. · Zbl 0744.01009
[2] Borel, A. (1998). Twenty-five years with Nicolas Bourbaki. Notices Amer. Math. Soc. March. 45 373-380. · Zbl 0908.01009
[3] Hájek, J. (1968). Asymptotic normality of simple linear rank statistics under alternatives. Ann. Math. Statist. 39 325-346. · Zbl 0187.16401 · doi:10.1214/aoms/1177698394
[4] Hájek, J. (1971). Local asymptotic minimax and admissibility in estimation. Proc. Sixth Berkeley Symp. Math. Statist. Probab. 175-194. Univ. California Press, Berkeley. · Zbl 0281.62010
[5] Le Cam, L. (1947). Un instrument d’étude des fonctions aléatoires, la fonctionelle caractéristique. Comptes Rendus des Séances des Sciences Paris 224 710-711. · Zbl 0029.06203
[6] Le Cam, L. (1953). On some asymptotic properties of maximum likelihood estimates and related Bayes estimates. University of California Publications in Statistics 1 277-330.
[7] Le Cam, L. (1955). An extension of Wald’s theory of statistical decision functions. Ann. Math. Statist. 26 69-81. · Zbl 0064.38702 · doi:10.1214/aoms/1177728594
[8] Le Cam, L. (1964). 1959 Wald Lecture. Sufficiency and approximate sufficiency Ann. Math. Statist. 35 1419-1455. · Zbl 0129.11202 · doi:10.1214/aoms/1177700372
[9] Le Cam, L. (1994). An infinite dimensional convolution theorem. In Statistical Decision Theory and Related Topics V (S. S. Gupta and J. O. Berger, eds.) 401-411. Springer, New York. · Zbl 0794.62004
[10] Le Cam, L. and Yang, G. L. (1990). Asymptotics in Statistics, Some Basic Concepts. Springer, New York. · Zbl 0719.62003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.