Paredes, Lorna I.; Yee, Lee Peng; Chew, Tuan Seng Controlled convergence theorem for strong variational Banach-valued multiple integrals. (English) Zbl 1059.28013 Real Anal. Exch. 28(2002-2003), No. 2, 579-591 (2003). The authors prove a controlled convergence theorem for \(n\)-dimensional strong variational Banach-space valued integrals. The proof is different from that in the 1-dimensional case published in [Sci. Math. Jpn. 56, No. 2, 347–357 (2002; Zbl 1026.28013)] by L. I. Paredes and T. S. Chew. Reviewer: Kazimierz Musiał(Wrocław) Cited in 1 Document MSC: 28B05 Vector-valued set functions, measures and integrals 26A39 Denjoy and Perron integrals, other special integrals 46G10 Vector-valued measures and integration Keywords:Henstock integral; HL -integral; ML integral; variational Banach space valued multiple integrals; controlled convergence Citations:Zbl 1026.28013 PDF BibTeX XML Cite \textit{L. I. Paredes} et al., Real Anal. Exch. 28, No. 2, 579--591 (2003; Zbl 1059.28013) Full Text: DOI