zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Controllability results for nondensely defined evolution differential inclusions with nonlocal conditions. (English) Zbl 1059.34037
The author provides sufficient conditions for the controllability of the following semilinear evolution differential inclusion with nonlocal conditions $$ y'(t)\in Ay(t)+F(t,y(t))+(\Theta u)(t), \quad t\in J=[0,b],\quad y(0)+g(y)=y_{0},$$ where $A:D(A)\subset E\to E$ is a nondensely defined closed linear operator, $F: J\times E\to {\cal P}(E)\backslash\emptyset$ is a multivalued map $({\cal P}$ is the family of all subsets of $E$) and $g:C(J,E)\to E$ is a continuous function. The control function $u(\cdot)$ is given in $L^{2}(J,U)$, a Banach space of admissible control functions with $U$ as a Banach space. Finally, $\Theta$ is a bounded linear operator from $U$ to $E$ and $E$ is a separable Banach space. The proofs rely on the theory of integrated semigroups and the Bohnenblust-Karlin fixed-point theorem.

MSC:
34G25Evolution inclusions
34H05ODE in connection with control problems
93B05Controllability
WorldCat.org
Full Text: DOI
References:
[1] Arendt, W.: Vector valued Laplace transforms and Cauchy problems. Israel J. Math. 59 (1987) · Zbl 0637.44001
[2] Aubin, J. P.; Cellina, A.: Differential inclusions. Springer-valued analysis (1984) · Zbl 0538.34007
[3] Benchohra, M.; Gatsori, E.; Henderson, J.; Ntouyas, S. K.: Nondensely defined evolution impulsive differential inclusions with nonlocal conditions. J. math. Anal. appl. 286, 307-325 (2003) · Zbl 1039.34056
[4] Benchohra, M.; Ntouyas, S. K.: Nonlocal Cauchy problems for neutral functional differential and integrodifferential inclusions in Banach spaces. J. math. Anal. appl. 258, 573-590 (2001) · Zbl 0982.45008
[5] Benchohra, M.; Ntouyas, S. K.: Existence of mild solutions for certain delay semilinear evolution inclusions with nonlocal condition. Dynam. systems appl. 9, 405-412 (2000) · Zbl 0974.34076
[6] Benchohra, M.; Ntouyas, S. K.: Controllability of nonlinear integrodifferential inclusions in Banach spaces with nonlocal conditions. Fasc. math. 31, 5-22 (2001) · Zbl 1031.93024
[7] Benchohra, M.; Ntouyas, S. K.: Controllability of nonlinear differential equations in Banach spaces with nonlocal conditions. J. optim. Theory appl. 110, 315-324 (2001) · Zbl 0999.93010
[8] Benchohra, M.; Ntouyas, S. K.: Existence and controllability results for nonlinear differential inclusions with nonlocal conditions. J. appl. Anal. 8, 33-48 (2002) · Zbl 1037.34051
[9] Bohnenblust, H. F.; Karlin, S.: On a theorem of ville. Contributions to the theory of games. Annals of mathematics studies 24, 155-160 (1950) · Zbl 0041.25701
[10] Bressan, A.; Colombo, G.: Extensions and selections of maps with decomposable values. Studia math. 90, 69-86 (1988) · Zbl 0677.54013
[11] Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. math. Anal. appl. 162, 494-505 (1991) · Zbl 0748.34040
[12] Da Prato, G.; Sinestrari, E.: Differential operators with non-dense domains. Ann. scuola norm. Sup. Pisa sci. 14, 285-344 (1987) · Zbl 0652.34069
[13] Deimling, K.: Multivalued differential equations. (1992) · Zbl 0760.34002
[14] Deng, K.: Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. math. Annal. appl. 179, 630-637 (1993) · Zbl 0798.35076
[15] Frigon, M.; Granas, A.: Théorèmes d’existence pour des inclusions différentielles sans convexité. C. R. Acad. sci. Paris ser. I 310, 819-822 (1990) · Zbl 0731.47048
[16] Górniewicz, L.: Topological fixed point theory of multivalued mappings. Mathematics and its applications 495 (1999) · Zbl 0937.55001
[17] Hu, Sh.; Papageorgiou, N.: Handbook of multivalued analysis, vol. I: theory. (1997) · Zbl 0887.47001
[18] Kellerman, H.; Hieber, M.: Integrated semigroups. J. funct. Anal. 84, 160-180 (1989) · Zbl 0689.47014
[19] Lasota, A.; Opial, Z.: An application of the Kakutani--Ky Fan theorem in the theory of ordinary differential equations. Bull. acad. Pol sci. Ser. sci. Math. astronom. Phys. 13, 781-786 (1965) · Zbl 0151.10703
[20] Smart, D. R.: Fixed point theorems. (1974) · Zbl 0297.47042
[21] Zeidler, E.: Nonlinear functional analysis and applications, fixed point theorems. (1986) · Zbl 0583.47050