Serrin, James; Zou, Henghui Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. (English) Zbl 1059.35040 Acta Math. 189, No. 1, 79-142 (2002). The paper has essentially two main goals. The first one is to prove Liouville type results for degenerate problems of the type \[ \Delta_mu + f(u) = 0, \;\;u\geq 0 \] in a connected open set, considering also in particular the case \[ f(u) = u^{p-1},\;p>1. \] The second one is to derive universal estimates for the solutions of the previous problem, where universal means in particular independent from boundary conditions. Reviewer: Marco Biroli (Milano) Cited in 1 ReviewCited in 212 Documents MSC: 35J60 Nonlinear elliptic equations 35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs 35B45 A priori estimates in context of PDEs Keywords:nonlinear elliptic equations; Liouville type properties; a priori estimates × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Acerbi, E. &Fusco, N., Regularity for minimizers of non-quadratic functionals: the case 1<p<2.J. Math. Anal. Appl., 140 (1989), 115–135. · Zbl 0686.49004 · doi:10.1016/0022-247X(89)90098-X [2] Astarita, G. & Marrucci, G.,Principles of Non-Newtonian Fluid Mechanics. McGraw-Hill, 1974. · Zbl 0316.73001 [3] Bidaut-Veron, M.-F., Local and global behavior of solutions of quasilinear equations of Emden-Fowler type.Arch. Rational Mech. Anal., 107 (1989), 293–324. · Zbl 0696.35022 · doi:10.1007/BF00251552 [4] Bidaut-Veron, M.-F. &Pohozaev, S., Nonexistence results and estimates for some nonlinear elliptic problems.J. Anal. Math., 84 (2001), 1–49. · Zbl 1018.35040 · doi:10.1007/BF02788105 [5] Bidaut-Veron, M.-F. &Veron, L., Nonlinear elliptic equations on compact Riemannain manifolds and asymptotics of Emden equations.Invent. Math., 106 (1991), 489–539. · Zbl 0755.35036 · doi:10.1007/BF01243922 [6] Caffarelli, L., Garofalo, N. &Segala, F., A gradient bound for entire solutions of quasi-linear equations and its consequences.Comm. Pure Appl. Math., 47 (1994), 1457–1473. · Zbl 0819.35016 · doi:10.1002/cpa.3160471103 [7] Caffarelli, L., Gidas, B. &Spruck, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth.Comm. Pure Appl. Math., 42 (1989), 271–297. · Zbl 0702.35085 · doi:10.1002/cpa.3160420304 [8] Cauchy, A., Mémoire sur les fonctions complémentaires.C. R. Acad. Sci. Paris, 19 (1844), 1377–1384; also (Euvres complètes, Ire série, tome VIII, 378–383. [9] Díaz, J. I.,Nonlinear Partial Differential Equations and Free Boundaries, Vol. 1. Elliptic Equations. Pitman Res. Notes Math. Ser., 106. Pitman, Boston, MA, 1985. · Zbl 0595.35100 [10] DiBenedetto, E.,C 1+{\(\alpha\)} local regularity of weak solutions of degenerate elliptic equations.Nonlinear Anal., 7 (1983), 827–850. · Zbl 0539.35027 · doi:10.1016/0362-546X(83)90061-5 [11] Evans, L. C., A new proof of localC 1,{\(\alpha\)} regularity for solutions of certain degenerate elliptic P.D.E..J. Differential Equations, 45 (1982), 356–373. · Zbl 0508.35036 · doi:10.1016/0022-0396(82)90033-X [12] Gidas, B. &Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations.Comm. Pure Appl. Math., 34 (1981), 525–598. · Zbl 0465.35003 · doi:10.1002/cpa.3160340406 [13] Lewis, J. L., Regularity of the derivatives of solutions to certain degenerate elliptic equations.Indiana Univ. Math. J., 32 (1983), 849–858. · Zbl 0554.35048 · doi:10.1512/iumj.1983.32.32058 [14] Martinson, L. K. &Pavlov, K. B., The effect of magnetic plasticity in non-Newtonian fluids.Magnit. Gidrodinamika, 2 (1969), 69–75. [15] –, Unsteady shear flows of a conducting fluid with a rheological power flow.Magnit. Gidrodinamika, 3 (1970), 5869–5875. · Zbl 1276.11036 [16] Mazzeo, R. &Pacard, F., A construction of singular solutions for a semilinear elliptic equation using asymptotic analysis.J. Differential Geom., 44 (1996), 331–370. · Zbl 0869.35040 [17] Mikljukov, V. M., On the asymptotic properties of subsolutions of quasilinear equations of elliptic type and mappings with bounded distortion.Mat. Sb. (N.S.), 111 (1980), 42–66 (Russian). [18] Mitidieri, È. &Pokhozhaev, S. I., the absence of global positive solutions to quasilinear elliptic inequalities.Dokl. Akad. Nauk, 359 (1998), 456–460; English translation inDokl. Math., 57 (1998), 250–253. · Zbl 0976.35100 [19] Ni, W.-M. &Serrin, J., Existence and non-existence theorems for ground states of quasilinear partial differential equations: The anomalous case.Atti Convegni Lincei, 77 (1986), 231–257. [20] Peletier, L. A. &Serrin, J., Gradient bounds and Liouville theorems for quasilinear elliptic equations.Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5 (1978), 65–104. · Zbl 0383.35025 [21] Protter, M. H. &Weinberger, H. F.,Maximum Principles in Differential Equations. Springer-Verlag, New York, 1984 (reprinted). · Zbl 0153.13602 [22] Reshetnyak, Yu. G., Index boundedness condition for mappings with bounded distortion.Siberian Math. J., 9 (1968), 281–285. · Zbl 0167.06602 · doi:10.1007/BF02204791 [23] Serrin, J., Local behavior of solutions of quasi-linear equations.Acta Math., 111 (1964), 247–302. · Zbl 0128.09101 · doi:10.1007/BF02391014 [24] –, Isolated singularities of solutions of quasi-linear equations.Acta Math., 113 (1965), 219–240. · Zbl 0173.39202 · doi:10.1007/BF02391778 [25] –, Entire solutions of nonlinear Poisson equations.Proc. London Math. Soc. (3), 24 (1972), 348–366. · Zbl 0229.35035 · doi:10.1112/plms/s3-24.2.348 [26] –, Liouville theorems for quasilinear elliptic equations, inAtti del Convegno Internazionale sui Metodi Valutativi nella Fisica-Matematica (Rome, 1975), pp. 207–215. Accad. Naz. Lincei, Quaderno 217. Accad. Naz. Lincei, Rome, 1975. [27] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations.J. Differential Equations, 51 (1984), 126–150. · doi:10.1016/0022-0396(84)90105-0 [28] Trudinger, N. S., On Harnack type inequalities and their applications to quasilinear elliptic equations.Comm. Pure Appl. Math., 20 (1967), 721–747. · Zbl 0153.42703 · doi:10.1002/cpa.3160200406 [29] Uhlenbeck, K., Regularity for a class of non-linear elliptic systems.Acta Math., 138 (1977), 219–240. · Zbl 0372.35030 · doi:10.1007/BF02392316 [30] Ural’tseva, N. N., Degenerate quasilinear elliptic systems.Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 7 (1968), 184–222 (Russian). [31] Veron, L.,Singularities of Solutions of Second Order Quasilinear Equations. Pitman Res. Notes Math. Ser., 353. Longman, Harlow, 1996. [32] Zou, H., Slow decay and the Harnack inequality for positive solutions of {\(\Delta\)}u+up=0 inR n.Differential Integral Equations, 8 (1995), 1355–1368. · Zbl 0849.35028 [33] –, Symmetry of positive solutions of {\(\Delta\)}u+up=0 inR n.J. Differential Equations, 120 (1995), 46–88. · Zbl 0844.35028 · doi:10.1006/jdeq.1995.1105 [34] Dancer, E. N., Superlinear problems on domains with holes of asymptotic shape and exterior problems.Math. Z., 229 (1998), 475–491. · Zbl 0933.35068 · doi:10.1007/PL00004666 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.