zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global weak solutions for a new periodic integrable equation with peakon solutions. (English) Zbl 1059.35149
Summary: We prove the existence of global weak solutions the following new periodic integrable equation with peakon solutions: $$u_t- u_{txx}+ 4uu_x= 3u_xu_{xx}+ uu_{xxx}, \quad t>0,\ x\in \Bbb R,$$ $$u(0,x)= u_0(x), \quad x\in \Bbb R,\qquad u(t,x+1)= u(t,x), \quad t\geq 0,\ x\in \Bbb R.$$

MSC:
35Q58Other completely integrable PDE (MSC2000)
35Q53KdV-like (Korteweg-de Vries) equations
35G25Initial value problems for nonlinear higher-order PDE
WorldCat.org
Full Text: DOI
References:
[1] Beals, R.; Sattinger, D.; Szmigielski, J.: Multipeakons and a theorem of Stieltjes. Inverse problems 15, 1-4 (1999) · Zbl 0923.35154
[2] Bona, J. L.; Smith, R.: The initial-value problem for the Korteweg-de Vries equation. Philos. trans. Roy. soc. (London) 278, 555-601 (1975) · Zbl 0306.35027
[3] Camassa, R.; Holm, D.: An integrable shallow water equation with peaked solitons. Phys. rev. Lett. 71, 1661-1664 (1993) · Zbl 0972.35521
[4] Constantin, A.: The Cauchy problem for the periodic Camassa--Holm equation. J. differential equations 141, 218-235 (1997) · Zbl 0889.35022
[5] Constantin, A.: On the blow-up of solutions of a periodic shallow water equation. J. nonlinear sci. 10, 391-399 (2000) · Zbl 0960.35083
[6] Constantin, A.; Escher, J.: Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation. Comm. pure appl. Math. 51, 475-504 (1998) · Zbl 0934.35153
[7] Constantin, A.; Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta math. 181, 229-243 (1998) · Zbl 0923.76025
[8] Constantin, A.; Escher, J.: Global weak solutions for a shallow water equation. Indiana univ. Math. J. 47, 1527-1545 (1998) · Zbl 0930.35133
[9] Constantin, A.; Escher, J.: On the blow-up rate and the blow-up set of breaking waves for a shallow water equation. Math. Z. 233, 75-91 (2000) · Zbl 0954.35136
[10] Constantin, A.; Kolev, B.: On the geometric approach to the motion of inertial mechanical systems. J. phys. A 35, R51-R79 (2002) · Zbl 1039.37068
[11] Constantin, A.; Mckean, H. P.: A shallow water equation on the circle. Comm. pure appl. Math. 52, 949-982 (1999) · Zbl 0940.35177
[12] Constantin, A.; Molinet, L.: Global weak solutions for a shallow water equation. Comm. math. Phys. 211, 45-61 (2000) · Zbl 1002.35101
[13] Constantin, A.; Molinet, L.: Orbital stability of solitary waves for a shallow water equation. Physica D 157, 75-89 (2001) · Zbl 0984.35139
[14] Constantin, A.; Strauss, W. A.: Stability of peakons. Comm. pure appl. Math. 53, 603-610 (2000) · Zbl 1049.35149
[15] Constantin, A.; Strauss, W. A.: Stability of a class of solitary waves in compressible elastic rods. Phys. lett. A 270, 140-148 (2000) · Zbl 1115.74339
[16] Dai, H. H.: Model equations for nonlinear dispersive waves in a compressible mooney--rivlin rod. Acta mech. 127, 193-207 (1998) · Zbl 0910.73036
[17] Degasperis, A.; Holm, D. D.; Hone, A. N. W.: A new integral equation with peakon solutions. Theoret. math. Phys. 133, 1463-1474 (2002)
[18] Degasperis, A.; Procesi, M.: Asymptotic integrability. Symmetry and perturbation theory, 23-37 (1999) · Zbl 0963.35167
[19] Fokas, A.; Fuchssteiner, B.: Symplectic structures, their Bäcklund transformation and hereditary symmetries. Physica D 4, 47-66 (1981) · Zbl 1194.37114
[20] Johnson, R. S.: Camassa--Holm, Korteweg-de Vries and related models for water waves. J. fluid mech. 457, 63-82 (2002) · Zbl 1037.76006
[21] Kato, T.: On the Korteweg-de Vries equation. Manuscripta math. 28, 89-99 (1979) · Zbl 0415.35070
[22] Kenig, C.; Ponce, G.; Vega, L.: Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. pure appl. Math. 46, 527-620 (1993) · Zbl 0808.35128
[23] Malek, J.; Necas, J.; Rokyta, M.; Ruzicka, M.: Weak and measure-valued solutions to evolutionary pdes. (1996)
[24] H.P. McKean, Integrable Systems and Algebraic Curves, in: M. Grmela and J.E. Marsden (Eds.), Global Analysis, Lecture Notes in Mathematics, Vol. 755, Springer-Verlag, Berlin, 1979, pp. 83--200. · Zbl 0449.35080
[25] Misiolek, G.: A shallow water equation as a geodesic flow on the Bott--Virasoro group. J. geom. Phys. 24, 203-208 (1998) · Zbl 0901.58022
[26] Natanson, I. P.: Theory of functions of a real variable. (1998) · Zbl 1092.41503
[27] Xin, Z.; Zhang, P.: On the weak solutions to a shallow water equation. Comm. pure appl. Math. 53, 1411-1433 (2000) · Zbl 1048.35092
[28] Yin, Z.: On the Cauchy problem for a nonlinearly dispersive wave equation. J. nonlinear math. Phys. 10, 10-15 (2003) · Zbl 1021.35100
[29] Yin, Z.: Global existence for a new periodic integrable equation. J. math. Anal. appl. 283/1, 129-139 (2003) · Zbl 1033.35121