×

Global weak solutions for a new periodic integrable equation with peakon solutions. (English) Zbl 1059.35149

Summary: We prove the existence of global weak solutions the following new periodic integrable equation with peakon solutions: \[ u_t- u_{txx}+ 4uu_x= 3u_xu_{xx}+ uu_{xxx}, \quad t>0,\;x\in \mathbb R, \]
\[ u(0,x)= u_0(x), \quad x\in \mathbb R,\qquad u(t,x+1)= u(t,x), \quad t\geq 0,\;x\in \mathbb R. \]

MSC:

35Q58 Other completely integrable PDE (MSC2000)
35Q53 KdV equations (Korteweg-de Vries equations)
35G25 Initial value problems for nonlinear higher-order PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Beals, R.; Sattinger, D.; Szmigielski, J., Multipeakons and a theorem of Stieltjes, Inverse Problems, 15, 1-4 (1999) · Zbl 0923.35154
[2] Bona, J. L.; Smith, R., The initial-value problem for the Korteweg-de Vries equation, Philos. Trans. Roy. Soc. (London), 278, 555-601 (1975) · Zbl 0306.35027
[3] Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664 (1993) · Zbl 0972.35521
[4] Constantin, A., The Cauchy problem for the periodic Camassa-Holm equation, J. Differential Equations, 141, 218-235 (1997) · Zbl 0889.35022
[5] Constantin, A., On the blow-up of solutions of a periodic shallow water equation, J. Nonlinear Sci., 10, 391-399 (2000) · Zbl 0960.35083
[6] Constantin, A.; Escher, J., Well-posedness, global existence and blowup phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51, 475-504 (1998) · Zbl 0934.35153
[7] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 229-243 (1998) · Zbl 0923.76025
[8] Constantin, A.; Escher, J., Global weak solutions for a shallow water equation, Indiana Univ. Math. J., 47, 1527-1545 (1998) · Zbl 0930.35133
[9] Constantin, A.; Escher, J., On the blow-up rate and the blow-up set of breaking waves for a shallow water equation, Math. Z., 233, 75-91 (2000) · Zbl 0954.35136
[10] Constantin, A.; Kolev, B., On the geometric approach to the motion of inertial mechanical systems, J. Phys. A, 35, R51-R79 (2002) · Zbl 1039.37068
[11] Constantin, A.; McKean, H. P., A shallow water equation on the circle, Comm. Pure Appl. Math., 52, 949-982 (1999) · Zbl 0940.35177
[12] Constantin, A.; Molinet, L., Global weak solutions for a shallow water equation, Comm. Math. Phys., 211, 45-61 (2000) · Zbl 1002.35101
[13] Constantin, A.; Molinet, L., Orbital stability of solitary waves for a shallow water equation, Physica D, 157, 75-89 (2001) · Zbl 0984.35139
[14] Constantin, A.; Strauss, W. A., Stability of peakons, Comm. Pure Appl. Math., 53, 603-610 (2000) · Zbl 1049.35149
[15] Constantin, A.; Strauss, W. A., Stability of a class of solitary waves in compressible elastic rods, Phys. Lett. A, 270, 140-148 (2000) · Zbl 1115.74339
[16] Dai, H. H., Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod, Acta Mech., 127, 193-207 (1998) · Zbl 0910.73036
[17] Degasperis, A.; Holm, D. D.; Hone, A. N.W., A new integral equation with peakon solutions, Theoret. Math. Phys., 133, 1463-1474 (2002)
[18] Degasperis, A.; Procesi, M., Asymptotic integrability, (Degasperis, A.; Gaeta, G., Symmetry and Perturbation Theory (1999), World Scientific: World Scientific Singapore), 23-37 · Zbl 0963.35167
[19] Fokas, A.; Fuchssteiner, B., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4, 47-66 (1981) · Zbl 1194.37114
[20] Johnson, R. S., Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 457, 63-82 (2002) · Zbl 1037.76006
[21] Kato, T., On the Korteweg-de Vries equation, Manuscripta Math., 28, 89-99 (1979) · Zbl 0415.35070
[22] Kenig, C.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46, 527-620 (1993) · Zbl 0808.35128
[23] Malek, J.; Necas, J.; Rokyta, M.; Ruzicka, M., Weak and Measure-valued Solutions to Evolutionary PDEs (1996), Chapman & Hall: Chapman & Hall London · Zbl 0851.35002
[25] Misiolek, G., A shallow water equation as a geodesic flow on the Bott-Virasoro group, J. Geom. Phys., 24, 203-208 (1998) · Zbl 0901.58022
[26] Natanson, I. P., Theory of Functions of a Real Variable (1998), F. Ungar Publ. Co: F. Ungar Publ. Co New York · Zbl 0064.29102
[27] Xin, Z.; Zhang, P., On the weak solutions to a shallow water equation, Comm. Pure Appl. Math., LIII, 1411-1433 (2000) · Zbl 1048.35092
[28] Yin, Z., On the Cauchy problem for a nonlinearly dispersive wave equation, J. Nonlinear Math. Phys., 10, 10-15 (2003) · Zbl 1021.35100
[29] Yin, Z., Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283/1, 129-139 (2003) · Zbl 1033.35121
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.