The existence and uniqueness of the solution of an integral equation driven by a \(p\)-semimartingale of special type. (English) Zbl 1059.60068

Existence and uniqueness of adapted solution with almost all sample paths in the space of continuous functions with a bounded \(q\)-variation is proved for the equation \[ X_t = \xi + \int _0^t f(X_s)\,dW_s + \int _0^t g(X_s)\,dB^H_s,\quad 0\leq t\leq T, \] where \(W\) and \(B^H\) denote the standard Brownian motion and the fractional Brownian motion with the Hurst parameter \(H\in (1/2,1)\), respectively, \(f\) is a Lipschitz function on \(\mathbb R\) and \(g\in C^{1+\alpha }(\mathbb R)\), if \(0<\alpha <1,\;1/H<p<2\) are such that \(\alpha /q + 1/p >1\).


60H05 Stochastic integrals
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI


[1] Coquet, F.; Slomiǹski, L., On the convergence of Dirichlet processes, Bernoulli, 5, 4, 615-639, (1999) · Zbl 0953.60001
[2] Doléans-Dade, C., On the existence and unicity of solutions of stochastic integral equations, Z. wahrs. verw. gebiete, 36, 93-101, (1976) · Zbl 0343.60038
[3] Dudley, R.M., 1999. Picard iteration and p-variation: the work of Lyons (1994). Mini-proceedings: Workshop on Product Integrals and Pathwise Integration, MaPhySto, Aarhus.
[4] Dudley, R.M., Norvaiša, R., 1998. An Introduction to p-variation and Young Integrals. Lecture Notes No. 1, Aarhus University.
[5] Dudley, R.M.; Norvaiša, R., Product integrals, Young integrals and p-variation, Lecture notes in mathematics, Vol. 1703, (1999), Springer Berlin
[6] Dudley, R.M., Norvaiša, R., 2000. Concrete functional calculus. Unpublished manuscript.
[7] Fölmer, H., 1981. Dirichlet processes, Stochastic Integrals. Lecture Notes in Mathematics, Vol. 851. Springer, Berlin, pp. 476-478.
[8] Kazamaki, N., On the existence of solutions of martingale integral equations, Tôhoku math. J., 24, 463-468, (1972) · Zbl 0247.60036
[9] Kleptsyna, M.L., Kloeden, P.E., Anh, V.V., 1998. Existence and uniqueness theorems for fBm stochastic differential equations. Probl. Inf. Transm. 34 (4), 332-341, Transl. from Probl. Peredachi Inf. 34 (4), (1998) 51-61. · Zbl 0924.60042
[10] Kubilius, K., 1999a. The existence and uniqueness of the solution of the integral equation driven by a bounded p-variation function. Proceedings of the Lithuanian Mathematical Society, Vol. III. Technika, Vilnius, pp. 136-142.
[11] Kubilius, K., An approximation of a non-linear integral equation driven by a function of bounded p-variation, Lithuanian math. J., 39, 3, 317-330, (1999) · Zbl 0963.45012
[12] Kubilius, K., The existence and uniqueness of the solution of the integral equation driven by fractional Brownian motion, Lithuanian math. J., 40, special issue, 104-110, (2000) · Zbl 1013.60045
[13] Lépingle, D., La variation d’ordre p des semi-martingales, Z. wahrs. verw. gebiete, 36, 295-316, (1976) · Zbl 0325.60047
[14] Lin, S.J., Stochastic analysis of fractional Brownian motions, Stochastics stochastics rep., 55, 121-140, (1995) · Zbl 0886.60076
[15] Liptser, R.S.; Shiryaev, A.N., Theory of martingales. nauka, Moscow (in Russian). English translation (1989), (1986), Kluwer Academic Publishers Dordrecht
[16] Lyons, T., Differential equations driven by rough signals (I): an extension of an inequality of L.C. Young, Math. res. lett., 1, 451-464, (1994) · Zbl 0835.34004
[17] Norvaiša, R., 2000. Quadratic variation, p-variation and integration with applications to stock price modeling. Unpublished manuscript.
[18] Pisier, G.; Xu, Q., The strong p-variation of martingales and orthogonal series, Probab. theory related fields, 77, 497-514, (1988) · Zbl 0632.60004
[19] Protter, P.E., On the existence, uniqueness, convergence and explosions of solutions of systems of stochastic integral equations, Ann. probab., 5, 243-261, (1977) · Zbl 0363.60044
[20] Revuz, D.; Yor, M., Continuous martingales and Brownian motion, (1994), Springer Berlin · Zbl 0804.60001
[21] Ruzmaikina, A.A., 2000. Stieltjes integrals of Hölder continuous functions with applications to fractional Brownian motion. arXiv: math. PR/0005147 http://xxx.lanl.gov, 18pp. · Zbl 0970.60045
[22] Samorodnitsky, G.; Taqqu, M.S., Stable non-Gaussian random processes, (1994), Chapman and Hall London · Zbl 0925.60027
[23] Young, L.C., An inequality of the Hölder type, connected with Stieltjes integration, Acta math., 67, 251-282, (1936) · Zbl 0016.10404
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.