zbMATH — the first resource for mathematics

A discrete-time \(Geo/G/1\) retrial queue with general retrial times. (English) Zbl 1059.60092
Summary: We consider a discrete-time Geo/G/1 retrial queue in which the retrial time has a general distribution and the server, after each service completion, begins a process of search in order to find the following customer to be served. We study the Markov chain underlying the considered queueing system and its ergodicity condition. We find the generating function of the number of customers in the orbit and in the system. We derive the stochastic decomposition law and as an application we give bounds for the proximity between the steady-state distributions for our queueing system and its corresponding standard system. Also, we develop recursive formulae for calculating the steady-state distribution of the orbit and system sizes. Besides, we prove that the M/G/1 retrial queue with general retrial times can be approximated by our corresponding discrete-time system. Finally, we give numerical examples to illustrate the effect of the parameters on several performance characteristics.

60K25 Queueing theory (aspects of probability theory)
Full Text: DOI