Lehmann, E. L. “Student” and small-sample theory. (English) Zbl 1059.62503 Stat. Sci. 14, No. 4, 418-426 (1999). Summary: The paper discusses the contributions W. S. Gosset (Student) made to the three stages in which small-sample methodology was established in the period 1908-1933: (i) the distributions of the test-statistics under the assumption of normality, (ii) the robustness of these distributions against nonnormality, (iii) the optimal choice of test statistics. The conclusions are based on a careful reading of the correspondence of Gosset with Fisher and E. S. Pearson. Cited in 21 Documents MSC: 62-03 History of statistics 01A60 History of mathematics in the 20th century 62E15 Exact distribution theory in statistics 62F03 Parametric hypothesis testing Keywords:History of statistics; ”exact” distribution theory; assumption of normality; robustness; hypothesis testing; Neyman-Pearson theory × Cite Format Result Cite Review PDF Full Text: DOI References: [1] AIRY, G. B. 1879. On the Algebraic and Numerical Theory of Errors of Observations and the Combination of Observations. 3rd Ed. MacMillan, London. Z. [2] BOX, J. F. 1978. R. A. Fisher: The Life of a Scientist. Wiley, New York. Z. · Zbl 0666.01016 [3] BOX, J. F. 1981. Gosset, Fisher and the t-distribution. Amer. Statist. 35 61 66. Z. JSTOR: · doi:10.2307/2683142 [4] EISENHART, C. 1979. On the transition from “Student’s” z to “Student’s” t. Amer. Statist. 33 6 10. Z. JSTOR: · doi:10.2307/2683058 [5] FISHER, R. A. 1915. Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10 507 521. Z. [6] FISHER, R. A. 1921. On the “probable error” of a coefficient of correlation deduced from a small sample. Metron 1 3 32. Z. [7] FISHER, R. A. 1922a. On the mathematical foundations of theoretical statistics. Philos. Trans. Roy. Soc. London Ser. A 222 309 368. Z. · JFM 48.1280.02 [8] FISHER, R. A. 1922b. The goodness of fit of regression formulae, and the distribution of regression coefficients. J. Roy. Statist. Soc. 85 597 612. Z. [9] FISHER, R. A. 1924a. The distribution of the partial correlation coefficient. Metron 3 329 332. Z. [10] FISHER, R. A. 1924b. On a distribution yielding the error functions of several well known statistics. In Proc. Internat. Congress of Mathematics, Toronto 2 805 813. Z. · JFM 54.0564.02 [11] FISHER, R. A. 1925a. Applications of ‘Student’s’ distribution. Metron 5 90 104. Z. · JFM 51.0387.01 [12] FISHER, R. A. 1925b. Statistical Methods for Research Workers, Z. 2nd ed. 1928 Oliver and Boyd, Edinburgh. Z. · JFM 51.0414.08 [13] FISHER, R. A. 1928. The general sampling distribution of the multiple correlation coefficient. Proc. Roy. Soc. London Ser. A 121 654 673. Z. · JFM 54.0558.03 [14] FISHER, R. A. 1929. Statistics and biological research. Nature 124 266 267. Z. · JFM 55.0941.09 [15] FISHER, R. A. 1939. Student. Ann. Engenics 9 1 9. Z. · Zbl 0020.14806 · doi:10.1111/j.1469-1809.1939.tb02192.x [16] FISHER, R. A. 1971 1974. Collected Papers of R. A. Fisher Z. J. H. Bennett, ed.. Univ. Adelaide. Z. [17] GOSSET, W. S. 1970. Letters from W. S. Gosset to R. A. Fisher, 1915 1936 With Summaries by R. A. Fisher and a Foreword by L. McMullen. Printed for private circulation. Z. Z HALD, A. 1998. A History of Mathematical Statistics from. 1750 1930. Wiley, New York. Z. · Zbl 0979.01012 [18] JEVONS, W. S. 1874, 1877. The Principles of Science. McMillan, London. Z. [19] LAIRD, N. M. 1989. A conversation with F. N. David. Statist. Sci. 4 235 246. Z. [20] LEHMANN, E. L. 1993. The Bertrand Borel debate and the origins of the Neyman Pearson theory. In Statistics and Z Probability: A Raghu Raj Bahadur Festschrift J. K. Ghosh, S. K. Mitra, K. R. Parthasarathy and B. L. S. Prakasa Rao,. eds.. Wiley Eastern Limited, New Delhi. Z. [21] MCMULLEN, L. 1939. ‘Student’ as a man. Biometrika 30 205 210. Z. · Zbl 0020.04006 [22] MERRIMAN, M. 1884. A Textbook on the Method of Least Squares. Wiley, New York. Z. · JFM 16.0182.01 [23] MOSTELLER, R. and TUKEY, J. W. 1977. Data Analysis and Regression. Addison-Wesley, Reading, MA. Z. [24] NEYMAN, J. 1929. Methodes nouvelles de verification des hy\' ṕotheses. In Comptes Rendus du I Congres de Mathematiciens des Pays Slaves, Warsaw 355 366. Ź. [25] NEYMAN, J. 1967. A Selection of Early Statistical Papers of J. Neyman. Univ. California Press, Berkeley. Z. [26] NEYMAN, J. 1977. Frequentist probability and frequentist statistics. Synthese 36 97 131. Z. · Zbl 0372.60002 · doi:10.1007/BF00485695 [27] NEYMAN, J. and PEARSON, E. S. 1928. On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika 20A 175 240 and 263 294. Z. · JFM 54.0565.05 [28] NEYMAN, J. and PEARSON, E. S. 1933. On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. Roy. Soc. Ser. A 231 289 337. Z. · Zbl 0006.26804 · doi:10.1098/rsta.1933.0009 [29] NEYMAN, J. and PEARSON, E. S. 1967. Joint Statistical Papers of J. Neyman and E. S. Pearson. Univ. California Press, Berkeley. Z. · Zbl 0157.46901 [30] PEARSON, E. S. 1929a. Review of R. A. Fisher: Statistical Methods for Research Workers, 2nd ed. Nature. Z. [31] PEARSON, E. S. 1931. The analysis of variance in cases of nonnormal variation. Biometrika 23 114 133. Z. · Zbl 0003.35601 · doi:10.1093/biomet/23.1-2.114 [32] PEARSON, E. S. 1939. ‘Student’ as a statistician. Biometrika 30 210 250. Z. · Zbl 0020.04005 [33] PEARSON, E. S. 1966a. The Selected Papers of E. S. Pearson. Univ. California Press, Berkeley. Z. · Zbl 0149.24101 [34] PEARSON, E. S. 1967. Some reflexions on continuity in the development of mathematical statistics, 1885 1920. Biometrika 54 341 355. Z. JSTOR: · Zbl 0158.17005 [35] PEARSON, E. S. 1968. Some early correspondence between W. S Gosset, R. A. Fisher and Karl Pearson with notes and comments. Biometrika 55 445 457. Z. JSTOR: [36] PEARSON, E. S. 1990. ‘Student’ A Statistical Biography of Z William Sealy Gosset R. L. Plackett and G. A. Barnard,. eds.. Clarendon Press, Oxford. Z. · Zbl 0711.01030 [37] REID, C. 1982. Neyman From Life. Springer, New York. Z. STUDENT 1908a. The probable error of a mean. Biometrika 6 1 25.Z. STUDENT 1908b. Probable error of a correlation coefficient. Biometrika 6 302 310. Z. STUDENT 1917. Tables for estimating the probability that the mean of a unique sample of observations lies between and any given distance of the mean of the population from which the sample is drawn. Biometrika 6 414 417. Z. STUDENT 1925. New table for testing the significance of observations. Metron 5 105 108. Z. STUDENT 1929. Statistics in biological research. Nature 124 93. Z. STUDENT’S COLLECTED PAPERS 1942. E. S. Pearson and J. Wishart, eds. Cambridge Univ. Press. Z. · Zbl 0517.01034 [38] TANKARD, J. W., JR. 1984. The Statistical Pioneers. Schenkman, Cambridge. Z. [39] TIPPETT, L. H. C. 1927. Random Sampling Numbers. Cambridge Univ. Press. Z. [40] WELCH, B. L. 1958. ‘Student’ and small sample theory. J. Amer. Statist. Assoc. 53 777 788. JSTOR: · Zbl 0085.13721 · doi:10.2307/2281951 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.