×

A numerical method for large eddy simulation in complex geometries. (English) Zbl 1059.76033

Summary: We discuss the development of a numerical algorithm and solver capable of performing large eddy simulation in very complex geometries often encountered in industrial applications. The algorithm is developed for unstructured hybrid grids, is non-dissipative, yet robust at high Reynolds numbers on highly skewed grids. Simulation results for a variety of flows are presented.

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
76M12 Finite volume methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amit, R.; Hall, C. A.; Porsching, T. A., The dual variable method for solving fluid flow difference equations on Delaunay triangulations, J. Comput. Phys., 40, 183 (1981) · Zbl 0452.76024
[2] Arakawa, A., Computational design for long term numerical integration of the equations of fluid motion: two-dimensional incompressible flow, Part I, J. Comput. Phys., 1, 119-143 (1966) · Zbl 0147.44202
[3] H. Deconinck, T. Barth, Special course on unstructured grid methods for advection-dominated flows, AGARD Report, 1992, p. 787; H. Deconinck, T. Barth, Special course on unstructured grid methods for advection-dominated flows, AGARD Report, 1992, p. 787
[4] Fromm, J. E.; Harlow, F. H., Numerical solution of the problem of vortex street development, Phys. Fluids, 6, 175-182 (1963)
[5] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 7, 1760-1765 (1991) · Zbl 0825.76334
[6] Ghia, U.; Ghia, K. N.; Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48, 387-411 (1982) · Zbl 0511.76031
[7] F. Ham, S.V. Apte, G. Iaccarino, X. Wu, S. Herrmann, G. Constantinescu, K. Mahesh, P. Moin, Unstructured LES of reacting multiphase flows in realistic gas-turbine combustors, in: Annual Research Briefs - 2003, Center for Turbulence Research, Stanford University and NASA-Ames, to appear; F. Ham, S.V. Apte, G. Iaccarino, X. Wu, S. Herrmann, G. Constantinescu, K. Mahesh, P. Moin, Unstructured LES of reacting multiphase flows in realistic gas-turbine combustors, in: Annual Research Briefs - 2003, Center for Turbulence Research, Stanford University and NASA-Ames, to appear
[8] Harlow, F. H.; Welch, J. E., Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys. Fluids, 8, 2182-2189 (1965) · Zbl 1180.76043
[9] Hughes, T. J.R.; France, L. P.; Hulbert, G. M., A new finite element formulation for fluid dynamics Viii. the Galerkin/least-squares method for advective-diffusive equations, Comput. Methods Appl. Mech. Eng., 73, 173-189 (1989) · Zbl 0697.76100
[10] Hyman, J. M.; Shashkov, M., The orthogonal decomposition theorems for mimetic finite difference methods, SIAM J. Numer. Anal., 36, 3, 788 (1999) · Zbl 0972.65077
[11] K.E. Jansen, Large-eddy simulations of flow around a NACA 4412 airfoil using unstructured grids, in: Annual Research Briefs, Center for Turbulence Research, Stanford University/NASA Ames Research Center, 1996, pp. 225-232; K.E. Jansen, Large-eddy simulations of flow around a NACA 4412 airfoil using unstructured grids, in: Annual Research Briefs, Center for Turbulence Research, Stanford University/NASA Ames Research Center, 1996, pp. 225-232
[12] Kravchenko, A. G.; Moin, P., Numerical studies of flow over a circular cylinder at \(Re}_D =3900\), Phys. Fluids, 12, 2, 403-417 (2000) · Zbl 1149.76441
[13] Kravchenko, A. G.; Moin, P.; Shariff, K., B-Spline methods and zonal grids for simulations of complex turbulent flows, J. Comput. Phys., 151, 757-789 (1999) · Zbl 0942.76058
[14] Lilly, D. K., On the computational stability of numerical solutions of time-dependent non-linear geophysical fluid dynamics problems, Mon. Weather Rev., 93, 11-26 (1965)
[15] Lilly, D. K., A proposed modification of the Germano subgrid-scale closure method, Phys. Fluids A, 4, 3, 633-635 (1992)
[16] L.M. Lourenco, C. Shih, Characteristics of the the plane turbulent near wake of a circular cylinder – a particle image velocimetry study, private communication, 1993; L.M. Lourenco, C. Shih, Characteristics of the the plane turbulent near wake of a circular cylinder – a particle image velocimetry study, private communication, 1993
[17] K. Mahesh, G.R. Ruetsch, P. Moin, Towards large-eddy simulation in complex geometries, in: Annual Research Briefs - 1999, Center for Turbulence Research, Stanford University and NASA-Ames, 1999, pp. 379-387; K. Mahesh, G.R. Ruetsch, P. Moin, Towards large-eddy simulation in complex geometries, in: Annual Research Briefs - 1999, Center for Turbulence Research, Stanford University and NASA-Ames, 1999, pp. 379-387
[18] K. Mahesh, G. Constantinescu, P. Moin, Large-eddy simulation of gas-turbine combustors, in: Annual Research Briefs - 2000, Center for Turbulence Research, Stanford University and NASA-Ames, 2000, pp. 219-228; K. Mahesh, G. Constantinescu, P. Moin, Large-eddy simulation of gas-turbine combustors, in: Annual Research Briefs - 2000, Center for Turbulence Research, Stanford University and NASA-Ames, 2000, pp. 219-228
[19] K. Mahesh, G. Constantinescu, S. Apte, G. Iaccarino, P. Moin, Large-eddy simulation of gas-turbine combustors, in: Annual Research Briefs - 2001, Center for Turbulence Research, Stanford University and NASA-Ames, 2001, pp. 3-17; K. Mahesh, G. Constantinescu, S. Apte, G. Iaccarino, P. Moin, Large-eddy simulation of gas-turbine combustors, in: Annual Research Briefs - 2001, Center for Turbulence Research, Stanford University and NASA-Ames, 2001, pp. 3-17
[20] K. Mahesh, G. Constantinescu, S. Apte, G. Iaccarino, F. Ham, P. Moin, Progress towards large-eddy simulation of turbulent reacting and non-reacting flows in complex geometries, in: Annual Research Briefs - 2002, Center for Turbulence Research, Stanford University and NASA-Ames, 2002, pp. 115-142; K. Mahesh, G. Constantinescu, S. Apte, G. Iaccarino, F. Ham, P. Moin, Progress towards large-eddy simulation of turbulent reacting and non-reacting flows in complex geometries, in: Annual Research Briefs - 2002, Center for Turbulence Research, Stanford University and NASA-Ames, 2002, pp. 115-142 · Zbl 1111.74539
[21] Moin, P.; Squires, K.; Cabot, W.; Lee, S., A dynamic subgrid-scale model for compressible turbulence and scalar transport, Phys. Fluids A, 3, 2746-2757 (1991) · Zbl 0753.76074
[22] Mansour, N. N.; Moin, P.; Reynolds, W. C.; Ferziger, J. H., Improved methods for large-eddy simulation of turbulence, (Durst, F.; Launder, B. E.; Schmidt, F. W.; Whitelaw, J. H., Proceedings of the Turbulent Shear Flows I (1979), Springer: Springer Berlin), 386-401 · Zbl 0455.76048
[23] R. Mittal, S. Balachandar, On the inclusion of three dimensional effects in simulations of two-dimensional bluff body wake flows, in: Proceedings of the ASME Fluids Engineering Division Summer Meeting, Vancouver, BC, Canada, 1997; R. Mittal, S. Balachandar, On the inclusion of three dimensional effects in simulations of two-dimensional bluff body wake flows, in: Proceedings of the ASME Fluids Engineering Division Summer Meeting, Vancouver, BC, Canada, 1997
[24] Mittal, R.; Moin, P., Suitability of upwind biased schemes for large-eddy simulation, AIAA J., 30, 8, 1415-1417 (1997) · Zbl 0900.76336
[25] Moin, P., Fundamentals of Engineering Numerical Analysis (2001), Cambridge University Press · Zbl 0993.65003
[26] Moin, P.; Kim, J., On the numerical solution of time-dependent viscous incompressible flows involving solid boundaries, J. Comput. Phys., 35, 381-392 (1980) · Zbl 0425.76027
[27] Moin, P.; Mahesh, K., Direct numerical simulation: a tool in turbulence research, Ann. Rev. Fluid Mech., 30, 539-578 (1998) · Zbl 1398.76073
[28] Nicolaides, R. A., The covolume approach to computing incompressible flow, (Hussaini, M. Y.; Kumar, A.; Salas, M. D., Algorithmic Trends in Computational Fluid Dynamics (1993), Springer: Springer Berlin/New York), 295-333 · Zbl 1189.76392
[29] R.A. Nicolaides, X. Wu, Covolume solutions of three-dimensional div-curl equations, ICASE Report 95-4, 1995; R.A. Nicolaides, X. Wu, Covolume solutions of three-dimensional div-curl equations, ICASE Report 95-4, 1995
[30] Ong, L.; Wallace, J., The velocity field of the turbulent very near wake of a circular cylinder, Exp. Fluids, 20, 441-453 (1996)
[31] Perot, B., Conservation properties of unstructured staggered mesh schemes, J. Comput. Phys., 175, 2, 764-791 (2002) · Zbl 1018.76036
[32] Rhie, C. M.; Chow, W. L., A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation, AIAA J., 21, 1525-1532 (1983) · Zbl 0528.76044
[33] Sommerfeld, M.; Qiu, H. H., Detailed measurements in a swirling particulate two-phase flow by a phase-Doppler anemometer, Int. J. Heat Fluid Flow, 12, 1, 20-28 (1991)
[34] Zhang, X.; Schmidt, D.; Perot, B., Accuracy and conservation properties of a three-dimensional unstructured staggered mesh scheme for fluid dynamics, J. Comput. Phys., 180, 1, 183-199 (2002) · Zbl 1130.76394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.