zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Concept lattices and order in fuzzy logic. (English) Zbl 1060.03040
The paper presents a generalization of the theory of concept lattices that were originated and further studied by R. Wille and his school [{\it R. Wille}, “Restructuring lattice theory: an approach based on hierarchies of concepts”, in: Ordered sets, Proc. NATO Adv. Study Inst., Banff/Can. 1981, 445--470 (1982; Zbl 0491.06008)]. The theory is based on a generalization to the structure of truth values forming a residuated lattice, where the adjointness condition is an algebraic counterpart of the many-valued modus ponens rule of fuzzy logic. In the paper, the notions of fuzzy partial order ({\bf L}-order) with respect to some fuzzy equality relation, lattice order, and fuzzy formal concepts are studied. The main result is a theorem characterizing the hierarchical structure of formal fuzzy concepts arising in a given formal fuzzy context. The paper ends with a theorem on Dedekind-MacNeille completion for fuzzy orders.

03B52Fuzzy logic; logic of vagueness
06A15Galois correspondences (ordered structures)
06D72Fuzzy lattices etc.
Full Text: DOI
[1] A. Arnauld, P. Nicole, La logique ou l’art de penser, 1662 (Also in German: Die Logik oder die Kunst des Denkens, Darmstadt, 1972).
[2] Banaschewski, B.: Hüllensysteme und erweiterungen von quasiordnungen. Z. math. Logic grundlagen math. 2, 117-130 (1956) · Zbl 0073.26904
[3] Bělohlávek, R.: Fuzzy Galois connections. Math. logic quart. 45, No. 4, 497-504 (1999) · Zbl 0938.03079
[4] R. Bělohlávek, Reduction and a simple proof of characterization of fuzzy concept lattices, Fund. Inform. 46 (4) (2001) 277--285.
[5] U. Bodenhofer, A similarity-based generalization of fuzzy orderings, Ph.D. Thesis, Universitätsverlag R. Trauner, Linz, 1999. · Zbl 0949.03049
[6] G. Birkhoff, Lattice Theory, 3rd Edition, AMS Coll. Publ., vol. 25, American Mathematical Society, Providence, RI, 1967.
[7] Ganter, B.; Wille, R.: Formal concept analysis, mathematical foundations. (1999) · Zbl 0909.06001
[8] Goguen, J. A.: L-fuzzy sets. J. math. Anal. appl. 18, 145-174 (1967) · Zbl 0145.24404
[9] Hájek, P.: Metamathematics of fuzzy logic. (1998) · Zbl 0937.03030
[10] Höhle, U.: On the fundamentals of fuzzy set theory. J. math. Anal. appl. 201, 786-826 (1996) · Zbl 0860.03038
[11] Macneille, H. M.: Partially ordered sets. Trans. amer. Math. soc. 42, 416-460 (1937) · Zbl 0017.33904
[12] Ore, O.: Galois connections. Trans. amer. Math. soc. 55, 493-513 (1944) · Zbl 0060.06204
[13] Pollandt, S.: Fuzzy begriffe. (1997) · Zbl 0870.06008
[14] Schmidt, J.: Zur kennzeichnung der Dedekind--macneillschen hülle einer geordneten menge. Arch. math. 7, 241-249 (1956) · Zbl 0073.03801
[15] E. Schröder, Algebra der Logik I, II, III, Leipzig, 1890, 1891, 1895.
[16] Wille, R.: Restructuring lattice theory: an approach based on hierarchies of concepts. Ordered sets, 445-470 (1982) · Zbl 0491.06008
[17] Zadeh, L. A.: Fuzzy sets. Inform. control 8, No. 3, 338-353 (1965) · Zbl 0139.24606