zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Coercive boundary value problems for regular degenerate differential-operator equations. (English) Zbl 1060.35045
The main goal of the present paper is to discuss boundary value problems for degenerate differential-operator equations on Banach-valued function spaces. The maximal $L_p$ regularity and Fredholmness of the problems under considerations are proved. The obtained results are applied to nonlocal boundary value problems for degenerate elliptic, quasi-elliptic partial differential equations and their finite or infinite systems on cylindrical domains.

35J70Degenerate elliptic equations
34G10Linear ODE in abstract spaces
Full Text: DOI
[1] Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. pure appl. Math. 15, 119-147 (1962) · Zbl 0109.32701
[2] Amann, H.: Operator-valued Fourier multipliers, vector-valued Besov spaces, and applications. Math. nachr. 186, 5-56 (1997) · Zbl 0880.42007
[3] Amann, H.: Linear and quasi-linear equations, vol. 1. (1995) · Zbl 0819.35001
[4] Aubin, J. P.: Abstract boundary-value operators and their adjoints. Rend. sem. Padova 43, 1-33 (1970) · Zbl 0247.47042
[5] Aibeche, A.: Coerciveness estimates for a class of nonlocal elliptic problems. Differential equations dynam. Systems 1, 341-351 (1993) · Zbl 0875.35021
[6] Burkholder, D. L.: A geometrical conditions that implies the existence certain singular integral of Banach space-valued functions. Proc. conf. Harmonic analysis in honor of antonu zigmund, Chicago, 1981, 270-286 (1983)
[7] Clement, Ph.; De Pagter, B.; Sukochev, F. A.; Witvlet, H.: Schauder decomposition and multiplier theorems. Studia math. 138, 135-163 (2000)
[8] Dore, G.; Venni, A.: On the closedness of the sum of two closed operators. Math. Z. 196, 189-201 (1987) · Zbl 0615.47002
[9] Hieber, M.; Prüss, J.: Neat kernels and maximal lp--lq-estimates for parabolic evolution equations. Comm. partial differential equations 22, 1647-1669 (1997) · Zbl 0886.35030
[10] N. Kalton, G. Lancien, A solution to the problem of the Lp-maximal regularity, 1999, preprint · Zbl 1010.47024
[11] Fafini, A.: Su un problema ai limiti per certe equazioni astratte del secondo ordine. Rend. sem. Mat. univ. Padova 53, 211-230 (1975)
[12] Grisvard, P.: Elliptic problem in non-smooth domains. (1985) · Zbl 0695.35060
[13] Karakas, H. I.; Shakhmurov, V. B.; Yakubov, S.: Degenerate elliptic boundary value problems. Appl. anal. 60, 155-174 (1996) · Zbl 0872.34038
[14] Krein, S. G.: Linear differential equations in Banach space, American mathematical society. (1971) · Zbl 0236.47034
[15] Kato, S.: Perturbation theory of linear operators. (1972) · Zbl 0247.47009
[16] Kree, P.: Sur LES multiplicateurs dans FL aves poids. Ann. inst. Fourier (Grenoble) 16, 121-191 (1966)
[17] Kurtz, D. S.; Wheeden, R. L.: Result on weighted norm inequalities for multiplier. Trans. amer. Math. soc. 255, 343-362 (1979) · Zbl 0427.42004
[18] Lions, J. L.; Peetre, J.: Sur une classe d’espaces d’interpolation. Inst. hautes études sci. Publ. math. 19, 5-68 (1964)
[19] Lizorkin, P. I.: (Lp,Lq)-multiplicators of Fourier integrals. Dokl. akad. Nauk SSSR 152, 808-811 (1963)
[20] Lizorkin, P. I.; Shakhmurov, V. B.: Embedding theorems for classes of vector-valued functions, 1, 2. Iz. VUZ USSR, math., 70-78 (1989)
[21] Lamberton, D.: Equations d’evalution lineaires associeees a’des semigroupes de contractions dans less espaces lp. J. funct. Anal. 72, 252-262 (1987)
[22] Sobolevskii, P. E.: Inequalities coerciveness for abstract parabolic equations. Dokl. akad. Nauk SSSR 57, 27-40 (1964)
[23] Shklyar, A. Ya.: Complate second order linear differential equations in Hilbert spaces. (1997) · Zbl 0873.34049
[24] Shakhmurov, V. B.: Theorems about of compact embedding and applications. Dokl. akad. Nauk. SSSR 241, 1285-1288 (1978)
[25] Shakhmurov, V. B.: Embedding theorems in Banach-valued Sobolev Liouville spaces and their applications. J. electr. Electronics Istanbul univ. 2, 575-591 (2002)
[26] V.B. Shakhmurov, Embedding theorems in abstract spaces and their applications to degenerate differential-operator equations, Dr. science thesis (Phys.-math.), Steklov Mat. Inst., Moscow, 1987
[27] Triebel, H.: Interpolation theory. Function spaces. Differential operators. (1978) · Zbl 0387.46033
[28] Weis, L.: Operator-valued Fourier multiplier theorems and maximal lp regularity. Math. ann. 319, 735-775 (2001) · Zbl 0989.47025
[29] Yakubov, S.; Yakubov, Ya.: Differential-operator equations. Ordinary and partial differential equations. (2000) · Zbl 0936.35002