zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Soliton-like solutions of higher order wave equations of the Korteweg-de Vries type. (English) Zbl 1060.35127
Summary: In this work we study second and third order approximations of water wave equations of the Korteweg--de Vries (KdV) type. First we derive analytical expressions for solitary wave solutions for some special sets of parameters of the equations. Remarkably enough, in all these approximations, the form of the solitary wave and its amplitude-velocity dependence are identical to the $\text{sech}^2$ formula of the one-soliton solution of the KdV. Next we carry out a detailed numerical study of these solutions using a Fourier pseudospectral method combined with a finite-difference scheme, in parameter regions where soliton-like behavior is observed. In these regions, we find solitary waves which are stable and behave like solitons in the sense that they remain virtually unchanged under time evolution and mutual interaction. In general, these solutions sustain small oscillations in the form of radiation waves (trailing the solitary wave) and may still be regarded as stable, provided these radiation waves do not exceed a numerical stability threshold. Instability occurs at high enough wave speeds, when these oscillations exceed the stability threshold already at the outset, and manifests itself as a sudden increase of these oscillations followed by a blowup of the wave after relatively short time intervals.

MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35B35Stability of solutions of PDE
35Q51Soliton-like equations
37K40Soliton theory, asymptotic behavior of solutions
WorldCat.org
Full Text: DOI