zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos in Chen’s system with a fractional order. (English) Zbl 1060.37026
Summary: By utilizing the fractional calculus techniques, we found that chaos does exist in Chen’s system with a fractional order, and some phase diagrams are constructed.

MSC:
37D45Strange attractors, chaotic dynamics
28A80Fractals
WorldCat.org
Full Text: DOI
References:
[1] Butzer, P. L.; Westphal, U.: An introduction to fractional calculus. Applications of fractional calculus in physics, 1-85 (2000) · Zbl 0987.26005
[2] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[3] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications. (1993) · Zbl 0818.26003
[4] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, II. Geophys. J. R. astron. Soc. 13, 529-539 (1967)
[5] Chen, G.; Ueta, T.: Yet another chaotic attractor. Int. J. Bifurc. chaos 9, 1465-1466 (1999) · Zbl 0962.37013
[6] Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Elec. trans. Numer. anal. 5, 1-6 (1997) · Zbl 0890.65071
[7] Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations. J. math. Anal. appl. 265, 229-248 (2002) · Zbl 1014.34003
[8] Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor--corrector approach for the numerical solution of fractional differential equations. Nonlinear dyn. 29, 3-22 (2002) · Zbl 1009.65049
[9] Diethelm, K.; Freed, A. D.: The fracpece subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches rechnen, 57-71 (1999)
[10] Wolf, A.; Swinney, J. B.; Swinney, H. L.; Vastano, J. A.: Determining Lyapunov exponents from a time series. Phys. D 16, 285-317 (1985) · Zbl 0585.58037
[11] Sato, S.; Sano, M.; Sawada, Y.: Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic system. Prog. theor. Phys. 77, 1-5 (1987)
[12] Rosenstein, M. T.; Collins, J. J.; De Luca, C. J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117-134 (1993) · Zbl 0779.58030
[13] Rosenstein, M. T.; Collins, J. J.; De Luca, C. J.: Reconstruction expansion as a geometry-based framework for choosing delay times. Phys. D 73, 82-98 (1994)
[14] Charef, A.; Sun, H. H.; Tsao, Y. Y.; Onaral, B.: Fractional systems as represented by singularity function. IEEE trans. Auto control 37, No. 9, 1465-1470 (1993) · Zbl 0825.58027
[15] Hartley, T. T.; Lorenzo; Qammer, H. K.: Chaos in a fractional order Chua’s system. IEEE trans. CAS I 42, No. 8, 485-490 (1995)