zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Zero-inflated Poisson and binomial regression with random effects: a case study. (English) Zbl 1060.62535
Summary: In a 1992 Technometrics paper, {\it D. Lambert} [Technometrics 34, 1--14 (1992; Zbl 0850.62756)] described zero-inflated Poisson (ZIP) regression, a class of models for count data with excess zeros. In a ZIP model, a count response variable is assumed to be distributed as a mixture of a Poisson$(\lambda)$ distribution and a distribution with point mass of one at zero, with mixing probability $p$. Both $p$ and $\lambda$ are allowed to depend on covariates through canonical link generalized linear models. In this paper, we adapt Lambert’s methodology to an upper bounded count situation, thereby obtaining a zero-inflated binomial (ZIP) model. In addition, we add to the flexibility of these fixed effects models by incorporating random effects so that, e.g., the within-subject correlation and between-subject heterogeneity typical of repeated measures data can be accommodated. We motivate, develop, and illustrate the methods described here with an example from horticulture, where both upper bounded count (binomial-type) and unbounded count (Poisson-type) data with excess zeros were collected in a repeated measures designed experiment.

62J12Generalized linear models
62P10Applications of statistics to biology and medical sciences
Full Text: DOI