zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multi-order fractional differential equations and their numerical solution. (English) Zbl 1060.65070
The paper presents the numerical solution of multi-order fractional differential equations of the general (possibly nonlinear) form $$y^{(\alpha )}(t)=f(t, y(t), y^{(\beta_1)}(t), y^{(\beta_2)}(t),\dots, y^{(\beta_n)}(t))$$ with $\alpha>\beta_n>\beta_{n-1}>...>\beta_1$ and $\alpha -\beta_n\leq1$, $\beta_j -\beta_{j-1}\leq 1$ for all $j$ and $0<\beta_1\leq 1$. Its linear case is $y^{(\alpha )}(t)=\lambda_oy(t)+ \sum_{j=1}^n\lambda_jy^{(\beta_j)}(t)+f(t)$. The initial conditions have the form $y^{k}(t)=y_o^{(k)}$, $k=0,1,\dots,\lceil\alpha\rceil -1$. The derivatives are understood in the Caputo sense. A generalization of an approach employed in the solution of ordinary differential equations of order two or higher converting such equation to a system of equations of order one is used. It uses the fact that any real number can be approximated arbitrarily closely by a rational number. Thereby, the assumption on the commensuracy for fractional order equations can be ensured by an appropriate order approximation. A simple generalization of the theorem on the equivalence of a nonlinear system and the linear systems theory is presented first. Then, the nonlinear problem includes two Gronwall-type results for a two-term equation, the general existence-uniqueness as well as the structural stability results. A convergent and stable Adams-type numerical method is proposed including a specific numerical example.

65L05Initial value problems for ODE (numerical methods)
65L20Stability and convergence of numerical methods for ODE
34A34Nonlinear ODE and systems, general
26A33Fractional derivatives and integrals (real functions)
65L06Multistep, Runge-Kutta, and extrapolation methods
Full Text: DOI
[1] C.T.H. Baker, M.S. Derakhshan, Stability barriers to the construction of {{$\rho$},{$\sigma$}}-reducible and fractional quadrature rules, in: H. Braß, G. Hämmerlin (Eds.), Numerical Integration III, Vol. 85 of Internat. Ser. Numer. Math., Birkhäuser, Basel, 1988, pp. 1--15 · Zbl 0652.65014
[2] L. Blank, Numerical treatment of differential equations of fractional order, Numerical Analysis Report 287, Manchester Centre for Computational Mathematics, 1996 · Zbl 0870.65137
[3] Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order. Elect. transact. Numer. anal. 5, 1-6 (1997) · Zbl 0890.65071
[4] Lubich, C.: Fractional linear multistep methods for Abel--Volterra integral equations of the second kind. Math. comp. 45, 463-469 (1985) · Zbl 0584.65090
[5] Brunner, H.; Van Der Houwen, P. J.: The numerical solution of Volterra equations. (1986) · Zbl 0611.65092
[6] Diethelm, K.; Ford, N. J.: Numerical solution of the bagley--torvik equation. Bit 42, 490-507 (2002) · Zbl 1035.65067
[7] K. Diethelm, Y. Luchko, Numerical solution of linear multi-term differential equations of fractional order, J. Comput. Anal. Appl., in press · Zbl 1083.65064
[8] A.R. Nkamnang, Diskretisierung von mehrgliedrigen Abelschen Integralgleichungen und gewöhnlichen Differentialgleichungen gebrochener Ordnung, Ph.D. thesis, Freie Universität, Berlin, available electronically from http://darwin.inf.fu-berlin.de/1999/23, 1999
[9] Podlubny, I.: Fractional differential equations. (1999) · Zbl 0924.34008
[10] Diethelm, K.; Freed, A. D.: On the solution of nonlinear fractional differential equations used in the modeling of viscoplasticity. Scientific computing in chemical engineering II----computational fluid dynamics, reaction engineering, and molecular properties, 217-224 (1999)
[11] Oldham, K. B.; Spanier, J.: The fractional calculus, vol. 111 of mathematics in science and engineering. (1974) · Zbl 0292.26011
[12] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications. (1993) · Zbl 0818.26003
[13] Gaul, L.; Klein, P.; Kempfle, S.: Damping description involving fractional operators. Mech. syst. Signal process. 5, 81-88 (1991)
[14] Glöckle, W. G.; Nonnenmacher, T. F.: A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68, No. 1, 46-53 (1995)
[15] Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and fractional calculus in continuum mechanics, 291-348 (1997) · Zbl 0917.73004
[16] Metzler, R.; Schick, W.; Kilian, H. -G; Nonnenmacher, T. F.: Relaxation in filled polymers: A fractional calculus approach. J. chem. Phys. 103, 7180-7186 (1995)
[17] Caputo, M.: Linear models of dissipation whose Q is almost frequency independent, II. Geophys. J. Royal astronom. Soc. 13, 529-539 (1967)
[18] Edwards, J. T.; Ford, N. J.; Simpson, A. C.: The numerical solution of linear multi-term fractional differential equations: systems of equations. J. comput. Appl. math. 148, 401-418 (2002) · Zbl 1019.65048
[19] Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations. J. math. Anal. appl. 265, 229-248 (2002) · Zbl 1014.34003
[20] K. Diethelm, A.D. Freed, The FracPECE subroutine for the numerical solution of differential equations of fractional order, in: S. Heinzel, T. Plesser (Eds.), Forschung und wissenschaftliches Rechnen 1998, no. 52 in GWDG-Berichte, Gesellschaft für wissenschaftliche Datenverarbeitung, Göttingen, 1999, pp. 57--71
[21] Diethelm, K.; Freed, A. D.; Ford, N. J.: A predictor--corrector approach for the numerical solution of fractional differential equations. Nonlinear dyn. 29, 3-22 (2002) · Zbl 1009.65049
[22] K. Diethelm, A.D. Freed, N.J. Ford, Detailed convergence analysis for a fractional Adams method, Berichte der Mathematischen Institute der TU Braunschweig 02/02, http://www.tu-bs.de/ diethelm/publications/adams.ps · Zbl 1055.65098
[23] Ford, N. J.; Simpson, A. C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. algorithms 26, 333-346 (2001) · Zbl 0976.65062