Stable particle methods based on Lagrangian kernels. (English) Zbl 1060.74672

Summary: A large deformation particle method based on the Krongauz-Belytschko corrected-gradient meshfree method with Lagrangian kernels is developed. In this form, the gradient is corrected by a linear transformation so that linear completeness is satisfied. For the test functions, Shepard functions are used; this guarantees that the patch test is met. Lagrangian kernels are introduced to eliminate spurious distortions of the domain of material stability. A mass allocation scheme is developed that captures correct reflection of waves without any explicit application of traction boundary conditions. In addition, the Lagrangian kernel versions of various forms of smooth particle methods (SPH), including the standard forms and the Randles-Libersky modification are presented and studied. Results are obtained for a variety of problems that compare this method to standard forms of SPH, the Randles-Libersky correction and large deformation versions of the element-free Galerkin method.


74S30 Other numerical methods in solid mechanics (MSC2010)
Full Text: DOI


[1] Beissel, S.; Belytschko, T., Nodal integration on the element-free Galerkin method, Comput. Methods Appl. Mech. Engrg., 139, 49-74 (1996) · Zbl 0918.73329
[2] Belytschko, T.; Krongauz, Y.; Dolbow, J.; Gerlach, C., On the completeness of meshfree particle methods, Int. J. Numer. Methods Engrg., 43, 785-819 (1998) · Zbl 0939.74076
[3] Belytschko, T.; Fleming, M.; Organ, D.; Krongauz, Y.; Liu, W. K., Smoothing and accelerated computations in the element free Galerkin method, J. Comput. Appl. Math., 74, 111-126 (1996) · Zbl 0862.73058
[4] Belytschko, T.; Krongauz, Y.; Organ, D.; Krysl, P., Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, S.3, S.47 (1996) · Zbl 0891.73075
[5] Belytschko, T.; Lu, Y. Y.; Gu, L., Element-free Galerkin methods, Int. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077
[6] Belytschko, T.; Guo, Y.; Liu, W. K.; Xiao, S. P., A unified stability analysis of meshless particle methods, Int. J. Numer. Methods Engrg., 48, 1359-1400 (2000) · Zbl 0972.74078
[7] Belytschko, T.; Xiao, S. P., Stability analysis of particle methods with corrected derivatives, Comput. Math. Appl., 43, 329-350 (2000) · Zbl 1073.76619
[8] Belytschko, T., Crack propagation by element free Galerkin methods, Engrg. Fract. Mech., 51/2, 295-315 (1995)
[9] Belytschko, T.; Lu, Y. Y., Element-free Galerkin methods for static and dynamic fracture, Int. J. Solids Strucut., 32, 2547-2570 (1995) · Zbl 0918.73268
[10] Belytschko, T.; Liu, W. K.; Moran, B., Nonlinear Finite Elements for Continua and Structures (2000), John Wiley and Sons, Ltd: John Wiley and Sons, Ltd New York · Zbl 0959.74001
[11] Belytschko, T.; Chiang, H. Y.; Plaskacz, E., High resolution two-dimensional shear band computations imperfections and mesh dependency, Comput. Methods Appl. Mech. Engrg., 119, 1-15 (1994) · Zbl 0849.73064
[12] Black, T.; Belytschko, T., Convergence of corrected derivative methods for second-order linear partial differential equations, Int. J. Numer. Methods Engrg., 44, 2, 177-203 (1999) · Zbl 0938.65134
[13] Bonet, J.; Lok, T.-S. L., Variational and momentum preservation aspects of Smooth Particle Hydrodynamics formulations, Comput. Methods Appl. Mech. Engrg., 180, 97-155 (1999) · Zbl 0962.76075
[14] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin meshfree-methods, Int. J. Numer. Methods Engrg., 50, 435-466 (2001) · Zbl 1011.74081
[15] Dilts, G. A., Moving least squares particle hydrodynamics II: Conservation and boundaries, Int. J. Numer. Methods Engrg., 1503-1524 (2000) · Zbl 0960.76068
[16] Dilts, G. A., Moving-least-squares-particle hydrodynamics I: Consistency and stability, Int. J. Numer. Methods Engrg., 44 (1999), S.1115, S.1155 · Zbl 0951.76074
[18] Dyka, C. T.; Ingel, R. P., An approach for tensile instability in smoothed particle hydrodynamics, Comput. Struct., 57, 573-580 (1995) · Zbl 0900.73945
[19] Dyka, C. T.; Ingel, R. P., Addressing Tension Instability in SPH Method (1994), Naval Research Laboratory: Naval Research Laboratory Washington · Zbl 0900.73945
[20] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and applications to non-spherical stars, Mon. Not. R. Astr. Soc., 181, 375-389 (1977) · Zbl 0421.76032
[21] Girkmann, K., Flaechentragwerke, 6 (1974), Springer Verlag, Wiley: Springer Verlag, Wiley New York
[22] Grady, D. E.; Benson, D. A., Fragmentation of metal rings by electromagnetic loading, Exp. Mech., 12, 187, 393-400 (1983)
[23] Hao, S.; Liu, W. K.; Chang, C. T., Computer implementation of damage models by finite element and meshfree methods, Comput. Methods Appl. Mech. Engrg., 187, 401-440 (2000) · Zbl 0980.74063
[24] Johnson, G. R.; Beissel, S. R., Normalized smoothing functions for SPH impact computations, Int. J. Numer. Methods Engrg., 39 (1996), S.2725, S.2741 · Zbl 0880.73076
[25] Kachanov, L. M., Time of the rupture process under creep conditions, Izv. Akad. Nauk SSR Otd. Tech., 8, 26-31 (1958)
[26] Kachanov, L. M., Foundations of the Theory of Plasticity (1971), North Holland: North Holland London · Zbl 0231.73015
[27] Krongauz, Y.; Belytschko, T., Consistent pseudo derivatives in meshless methods, Comput. Methods Appl. Mech. Engrg., 146, 371-386 (1997) · Zbl 0894.73156
[29] Liu, W. K.; Jun, S.; Adee, J.; Belytschko, T., Reproducing kernel particle method for structural dynamics, Int. J. Numer. Methods Engrg., 38, 1665-1679 (1995) · Zbl 0840.73078
[30] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Methods Fluid, 20, 1081-1106 (1995) · Zbl 0881.76072
[31] Lu, Y. Y.; Belytschko, T.; Gu, L., A new implementation of the element free Galerkin method, Comput. Methods Appl. Mech. Engrg., 113, 397-414 (1994) · Zbl 0847.73064
[32] Lucy, L. B., A numerical approach to the testing of fission hypothesis, Astronom. J., 82, 1013-1024 (1977)
[33] Monaghan, J. J., Kernel estimates as a basis for general particle methods in hydrodynamics, J. Comput. Phys., 46 (1982), S.429, S.453 · Zbl 0487.76010
[34] Monoghan, J. J., An introduction to sph, Comput. Phys., Commun., 48, 89-96 (1988) · Zbl 0673.76089
[35] Mott, N. F., Fragmentation of shell cases, Proc. Roy. Soc. London, 300, 300-308 (1947)
[36] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: diffuse approximation and diffuse elements, Comput. Mech., 10, 307-318 (1992) · Zbl 0764.65068
[37] Needleman, A., Dynamic shear band development in plane strain, J. Appl. Mech., 56/1, March (1989)
[40] Rabczuk, T.; Eibl, J., Simulation of high velocity concrete fragmentation using SPH/MLSPH, Int. J. Numer. Methods Engrg., 56, 1421-1444 (2003) · Zbl 1106.74428
[41] Randles, P. W.; Libersky, L. D., Recent improvements in SPH modeling of hypervelocity impact, Int. J. Impact Engrg., 20, 525-532 (1997)
[42] Randles, P. W.; Libersky, L. D., Normalized SPH with stress points, Int. J. Numer. Methods Engrg., 48, 1445-1462 (2000) · Zbl 0963.74079
[44] Simo, J. C.; Hughes, T. J.R., On the variational foundations of assumed strain methods, J. Appl. Mech., 53, 1685-1695 (1986) · Zbl 0592.73019
[46] Swegle, J. W.; Hicks, D. A., Smooth particle hydrodynamics stability analysis, J. Comput. Phys., 116, 123-134 (1995) · Zbl 0818.76071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.