zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stable particle methods based on Lagrangian kernels. (English) Zbl 1060.74672
Summary: A large deformation particle method based on the Krongauz-Belytschko corrected-gradient meshfree method with Lagrangian kernels is developed. In this form, the gradient is corrected by a linear transformation so that linear completeness is satisfied. For the test functions, Shepard functions are used; this guarantees that the patch test is met. Lagrangian kernels are introduced to eliminate spurious distortions of the domain of material stability. A mass allocation scheme is developed that captures correct reflection of waves without any explicit application of traction boundary conditions. In addition, the Lagrangian kernel versions of various forms of smooth particle methods (SPH), including the standard forms and the Randles-Libersky modification are presented and studied. Results are obtained for a variety of problems that compare this method to standard forms of SPH, the Randles-Libersky correction and large deformation versions of the element-free Galerkin method.

74S30Other numerical methods in solid mechanics
Full Text: DOI
[1] Beissel, S.; Belytschko, T.: Nodal integration on the element-free Galerkin method. Comput. methods appl. Mech. engrg. 139, 49-74 (1996) · Zbl 0918.73329
[2] Belytschko, T.; Krongauz, Y.; Dolbow, J.; Gerlach, C.: On the completeness of meshfree particle methods. Int. J. Numer. methods engrg. 43, 785-819 (1998) · Zbl 0939.74076
[3] Belytschko, T.; Fleming, M.; Organ, D.; Krongauz, Y.; Liu, W. K.: Smoothing and accelerated computations in the element free Galerkin method. J. comput. Appl. math. 74, 111-126 (1996) · Zbl 0862.73058
[4] Belytschko, T.; Krongauz, Y.; Organ, D.; Krysl, P.: Meshless methods: an overview and recent developments. Comput. methods appl. Mech. engrg. 139, S.3, S.47 (1996) · Zbl 0891.73075
[5] Belytschko, T.; Lu, Y. Y.; Gu, L.: Element-free Galerkin methods. Int. J. Numer. methods engrg. 37, 229-256 (1994) · Zbl 0796.73077
[6] Belytschko, T.; Guo, Y.; Liu, W. K.; Xiao, S. P.: A unified stability analysis of meshless particle methods. Int. J. Numer. methods engrg. 48, 1359-1400 (2000) · Zbl 0972.74078
[7] Belytschko, T.; Xiao, S. P.: Stability analysis of particle methods with corrected derivatives. Comput. math. Appl. 43, 329-350 (2000) · Zbl 1073.76619
[8] Belytschko, T.: Crack propagation by element free Galerkin methods. Engrg. fract. Mech. 51/2, 295-315 (1995)
[9] Belytschko, T.; Lu, Y. Y.: Element-free Galerkin methods for static and dynamic fracture. Int. J. Solids strucut. 32, 2547-2570 (1995) · Zbl 0918.73268
[10] Belytschko, T.; Liu, W. K.; Moran, B.: Nonlinear finite elements for continua and structures. (2000) · Zbl 0959.74001
[11] Belytschko, T.; Chiang, H. Y.; Plaskacz, E.: High resolution two-dimensional shear band computations imperfections and mesh dependency. Comput. methods appl. Mech. engrg. 119, 1-15 (1994) · Zbl 0849.73064
[12] Black, T.; Belytschko, T.: Convergence of corrected derivative methods for second-order linear partial differential equations. Int. J. Numer. methods engrg. 44, No. 2, 177-203 (1999) · Zbl 0938.65134
[13] Bonet, J.; Lok, T. -S.L.: Variational and momentum preservation aspects of smooth particle hydrodynamics formulations. Comput. methods appl. Mech. engrg. 180, 97-155 (1999) · Zbl 0962.76075
[14] Chen, J. S.; Wu, C. T.; Yoon, S.; You, Y.: A stabilized conforming nodal integration for Galerkin meshfree-methods. Int. J. Numer. methods engrg. 50, 435-466 (2001) · Zbl 1011.74081
[15] Dilts, G. A.: Moving least squares particle hydrodynamics II: Conservation and boundaries. Int. J. Numer. methods engrg., 1503-1524 (2000) · Zbl 0960.76068
[16] Dilts, G. A.: Moving-least-squares-particle hydrodynamics I: Consistency and stability. Int. J. Numer. methods engrg. 44 (1999) · Zbl 0951.76074
[17] G.A. Dilts, Some recent developments for moving-least-squares particle methods, First M.I.T. Conference on Computational Fluid and Soil Mechanics, June 12--14, 2001, Preprint, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
[18] Dyka, C. T.; Ingel, R. P.: An approach for tensile instability in smoothed particle hydrodynamics. Comput. struct. 57, 573-580 (1995) · Zbl 0900.73945
[19] Dyka, C. T.; Ingel, R. P.: Addressing tension instability in SPH method. (1994) · Zbl 0900.73945
[20] Gingold, R. A.; Monaghan, J. J.: Smoothed particle hydrodynamics: theory and applications to non-spherical stars. Mon. not. R. astr. Soc. 181, 375-389 (1977) · Zbl 0421.76032
[21] Girkmann, K.: Flaechentragwerke, 6. (1974)
[22] Grady, D. E.; Benson, D. A.: Fragmentation of metal rings by electromagnetic loading. Exp. mech. 12, No. 187, 393-400 (1983)
[23] Hao, S.; Liu, W. K.; Chang, C. T.: Computer implementation of damage models by finite element and meshfree methods. Comput. methods appl. Mech. engrg. 187, 401-440 (2000) · Zbl 0980.74063
[24] Johnson, G. R.; Beissel, S. R.: Normalized smoothing functions for SPH impact computations. Int. J. Numer. methods engrg. 39 (1996) · Zbl 0880.73076
[25] Kachanov, L. M.: Time of the rupture process under creep conditions. Izv. akad. Nauk SSR otd. Tech. 8, 26-31 (1958)
[26] Kachanov, L. M.: Foundations of the theory of plasticity. (1971) · Zbl 0231.73015
[27] Krongauz, Y.; Belytschko, T.: Consistent pseudo derivatives in meshless methods. Comput. methods appl. Mech. engrg. 146, 371-386 (1997) · Zbl 0894.73156
[28] L.D. Libersky, A.G. Petschek, Smooth particle hydrodynamics with strength of materials, Advances in the Free Lagrange Method, Lecture Notes in Physics, 395, 1990 · Zbl 0791.76066
[29] Liu, W. K.; Jun, S.; Adee, J.; Belytschko, T.: Reproducing kernel particle method for structural dynamics. Int. J. Numer. methods engrg. 38, 1665-1679 (1995) · Zbl 0840.73078
[30] Liu, W. K.; Jun, S.; Zhang, Y. F.: Reproducing kernel particle methods. Int. J. Numer. methods fluid 20, 1081-1106 (1995) · Zbl 0881.76072
[31] Lu, Y. Y.; Belytschko, T.; Gu, L.: A new implementation of the element free Galerkin method. Comput. methods appl. Mech. engrg. 113, 397-414 (1994) · Zbl 0847.73064
[32] Lucy, L. B.: A numerical approach to the testing of fission hypothesis. Astronom. J. 82, 1013-1024 (1977)
[33] Monaghan, J. J.: Kernel estimates as a basis for general particle methods in hydrodynamics. J. comput. Phys. 46 (1982) · Zbl 0487.76010
[34] Monoghan, J. J.: An introduction to sph. Comput. phys., commun. 48, 89-96 (1988) · Zbl 0673.76089
[35] Mott, N. F.: Fragmentation of shell cases. Proc. roy. Soc. London 300, 300-308 (1947)
[36] Nayroles, B.; Touzot, G.; Villon, P.: Generalizing the finite element method: diffuse approximation and diffuse elements. Comput. mech. 10, 307-318 (1992) · Zbl 0764.65068
[37] Needleman, A.: Dynamic shear band development in plane strain. J. appl. Mech. 56/1, No. March (1989)
[38] P.E. Petersson, Crack growth development of fracture zone in plain concrete and similar materials, Report No. TVBM-1006, Division of Building Materials, 1981, University of Lund, Sweden 1981
[39] T. Rabczuk, Numerische Untersuchungen zum Fragmentierungsverhalten von Beton mit Hilfe der SPH-Methode, Dissertation, Inst. Massivbau, Universitaet Karlsruhe, 2002
[40] Rabczuk, T.; Eibl, J.: Simulation of high velocity concrete fragmentation using SPH/MLSPH. Int. J. Numer. methods engrg. 56, 1421-1444 (2003) · Zbl 1106.74428
[41] Randles, P. W.; Libersky, L. D.: Recent improvements in SPH modeling of hypervelocity impact. Int. J. Impact engrg. 20, 525-532 (1997)
[42] Randles, P. W.; Libersky, L. D.: Normalized SPH with stress points. Int. J. Numer. methods engrg. 48, 1445-1462 (2000) · Zbl 0963.74079
[43] Schmidt-Hurtienne: Ein dreiaxiales Schaedigungsmodell zur Beschreibung des Dehnrateneffektes von Beton, Dissertation, Institut fuer Massivbau und Baustofftechnologie, Universitaet Karlsruhe, 2000
[44] Simo, J. C.; Hughes, T. J. R.: On the variational foundations of assumed strain methods. J. appl. Mech. 53, 1685-1695 (1986) · Zbl 0592.73019
[45] J.W. Swegle, S.W. Attaway, M.W. Heinstein, F.J. Mello, Hicks D.L., An Analysis of Smoothed Particle Hydrodynamics, Sandia Report SAND93-2513,1994,SNL,Albuquerque, NM 87185
[46] Swegle, J. W.; Hicks, D. A.: Smooth particle hydrodynamics stability analysis. J. comput. Phys. 116, 123-134 (1995) · Zbl 0818.76071
[47] S.P. Xiao, T. Belytschko, Material stability analysis of particle methods, Adv. Comput. Math., accepted for publication · Zbl 1060.74070