Variational formulation for the smooth particle hydrodynamics (SPH) simulation of fluid and solid problems. (English) Zbl 1060.76637

Summary: The paper describes the variational formulation of smooth particle hydrodynamics for both fluids and solids applications. The resulting equations treat the continuum as a Hamiltonian system of particles where the constitutive equation of the continuum is represented via an internal energy term. For solids this internal energy is derived from the deformation gradient of the mapping in terms of a hyperelastic strain energy function. In the case of fluids, the internal energy term is a function of the density. Once the internal energy terms are established the equations of motion are derived as equations of Lagrange, where the Lagrangian coordinates are the current positions of the particles. Since the energy terms are independent of rigid body rotations and translations, this formulation ensures the preservation of physical constants of the motion such as linear and angular momentum.


76M28 Particle methods and lattice-gas methods
74S30 Other numerical methods in solid mechanics (MSC2010)
Full Text: DOI


[1] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013 (1977)
[2] Gingold, R. A.; Monaghan, J. J., Smooth particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 375 (1977) · Zbl 0421.76032
[3] Schussler, M.; Schmitt, D., Comments on smoothed particle hydrodynamics, Astron. Astrophys., 97, 373 (1981)
[4] Gingold, R. A.; Monaghan, J. J., Kernel estimates as a basis for general particle methods in hydrodynamics, J. Comput. Phys., 46, 429 (1982) · Zbl 0487.76010
[5] Monaghan, J. J., An introduction to SPH, Comput. Phys. Commun., 48, 89-96 (1988) · Zbl 0673.76089
[6] Monaghan, J. J., Why particle methods work, SIAM J. Sci. & Stat. Comput., 3, 422 (1982) · Zbl 0498.76010
[7] Monaghan, J. J., Particle methods for hydrodynamics, Comput. Phys. Rep., 3, 71 (1985)
[8] Monaghan, J. J., An introduction to SPH, Comput. Phys. Commun., 48, 89 (1988) · Zbl 0673.76089
[9] Monaghan, J. J., On the problem of penetration in particle methods, J. Comput. Phys., 82, 1 (1989) · Zbl 0665.76124
[10] Monaghan, J. J., Smoothed particle hydrodynamics, Ann. Rev. Astron. Astrophys., 30, 543 (1992)
[11] Takeda, H.; Miyama, S. M.; Sekiya, M., Numerical simulation of viscous flow by smoothed particle hydrodynamics, Prog. Theor. Phys., 92, 939 (1994)
[12] Monaghan, J. J., Simulating free surface flows with SPH, J. Comput. Phys., 110, 399 (1994) · Zbl 0794.76073
[13] Monaghan, J. J.; Kocharyan, A., SPH simulation of multi-phase flow, Comput. Phys. Commun., 87, 225 (1995) · Zbl 0923.76195
[14] Libersky, L. D.; Petschek, A. G.; Carney, T. C.; Hipp, J. R.; Allahadi, F. A., High strain lagrangian hydrodynamics, J.Comput. Phys., 109, 67 (1993) · Zbl 0791.76065
[15] Benz, W.; Asphaug, E., Simulations of brittle solids using smooth particle hydrodynamics, Comput. Phys. Commun., 87, 253 (1995) · Zbl 0918.73335
[16] Johnson, G. R.; Stryk, R. A.; Beissel, S. R., SPH for high velocity impact computations, Comput. Methods Appl. Mech. Engrg., 139, 347 (1996) · Zbl 0895.76069
[17] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Int. J. Numer. Method Engrg., 20 (1995) · Zbl 0881.76072
[18] Johnson, G. R.; Beissel, S. R., Normalised smoothing functions for SPH impact computations, Int. J. Numer. Method Engrg., 39, 2725 (1996) · Zbl 0880.73076
[19] Randles, P. W.; Libersky, L. D., Smoothed particle hydrodynamics: some recent improvements and applications, Comput. Methods Appl. Mech. Engrg., 139, 375 (1996) · Zbl 0896.73075
[20] Bonet, J.; Lok, t.-s. L., Variational and momentum preservation aspects of smooth particle hydrodynamics formulations, Comput. Methods Appl. Mech. Engrg., 180, 97-115 (1999) · Zbl 0962.76075
[21] Bonet, J.; Kulasegaram, S., Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations, Int. J. Numer. Method Engrg. (2000) · Zbl 0964.76071
[22] Dilts, G. A., Moving least squares particle hydrodynamics-consistency and stability, Int. J. Numer. Method Engrg., 44, 1115-1155 (2000) · Zbl 0951.76074
[23] Swegle, J. W.; Hicks, D. L.; Attaway, S. W., Smooth particle hydrodynamics stability analysis, J. Comput. Phys., 116 (1995) · Zbl 0818.76071
[24] Dyka, C. T.; Ingel, R. P., An approach for tension instability in smooth particle hydrodynamics (SPH), Comput. Struct., 57 (1995) · Zbl 0900.73945
[25] Dyka, C. T.; Ingel, R. P., Stress points for tension instability in SPH, Int. J. Numer. Method Engrg., 40 (1997) · Zbl 0890.73077
[26] Belytschko, T.; Guo, Y.; Liu, W. K.; Xiao, S. P., A unified stability analysis of meshless methods, Int. J. Numer. Method Engrg., 48, 1359-1400 (2000) · Zbl 0972.74078
[27] Bonet, J.; Kulasegaram, S., Remarks on tension instability of Eulerian and Lagrangian corrected smooth particle hydrodynamics (CSPH) methods, Int. J. Numer. Method Engrg., 52, 11, 1203-1220 (2001) · Zbl 1112.74562
[28] Bonet, J.; Wood, R. D., Non-linear Continuum Mechanics for Finite Element Analysis (1997), Cambridge University Press: Cambridge University Press Cambridge, UK
[29] Bonet, J.; Burton, A. J., A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit application, Commun. Numer. Method Eng., 14, 5, 437-449 (1998) · Zbl 0906.73060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.