×

zbMATH — the first resource for mathematics

Matrix models for beta ensembles. (English) Zbl 1060.82020
Summary: This paper constructs tridiagonal random matrix models for general \((\beta > 0) \;\beta\)-Hermite (Gaussian) and \(\beta\)-Laguerre (Wishart) ensembles. These generalize the well-known Gaussian and Wishart models for \(\beta = 1,2,4\). Furthermore, in the cases of the \(\beta\)-Laguerre ensembles, we eliminate the exponent quantization present in the previously known models. We further discuss applications for the new matrix models, and present some open problems.

MSC:
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
82B10 Quantum equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aomoto K., SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. 18 pp 545– (1987)
[2] Baker T., Commun. Math. Phys. 188 pp 175– (1997) · Zbl 0903.33010
[3] Barsky D., Electronic J. Combinatorics 3 (2) pp R1– (1996)
[4] Chikuse Y., Linear Algebr. Appl. 176 pp 237– (1992)
[5] Delannay R., Phys. Rev. E 62 pp 1526– (2000)
[6] Dyson F., J. Math. Phys. 3 pp 1199– (1963) · Zbl 0134.45703
[7] Edelman A., J. Multivariate Anal. 60 pp 203– (1997) · Zbl 0886.15024
[8] Ivanov, D. A. ”Random-matrix ensembles in p-wave vortices,” e-print cond-mat/0103089.
[9] DOI: 10.1214/aoms/1177703550 · Zbl 0121.36605
[10] Johnstone I. M., Ann. Stat. 29 pp 295– (2001) · Zbl 1016.62078
[11] Kadell K., Adv. Math. 130 pp 33– (1997) · Zbl 0885.33009
[12] Kaneko J., SIAM (Soc. Ind. Appl. Math.) J. Math. Anal. 24 pp 1086– (1993)
[13] Lal Mehta M., J. Phys. A 31 pp 5377– (1998) · Zbl 1054.62553
[14] Okounkov A., Mathematical Research Letters 4 pp 69– (1997)
[15] Silverstein J. W., Ann. Prob. 13 pp 1364– (1985) · Zbl 0591.60025
[16] DOI: 10.1016/0001-8708(89)90015-7 · Zbl 0743.05072
[17] Tracy C. A., J. Stat. Phys. 92 pp 809– (1996) · Zbl 0942.60099
[18] Trotter H. F., Adv. Math. 54 pp 67– (1984) · Zbl 0562.15005
[19] DOI: 10.1063/1.531675 · Zbl 0871.58005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.