Design of adaptive sliding mode controller for chaos synchronization with uncertainties. (English) Zbl 1060.93536

Summary: In this paper an adaptive sliding mode controller is presented for a class of master-slave chaotic synchronization systems with uncertainties. Using an adaptive technique to estimate the switching gain, an adaptive sliding mode controller is then proposed to ensure that the sliding condition is maintained in finite time. The proposed adaptive sliding mode control scheme can be implemented without the requirement that the bounds of the uncertainties and the disturbances should be known in advance. The concept of extended systems is used such that continuous control input is obtained using a sliding mode design scheme. By comparing with the results in the existed literatures, the results show that the master-slave chaotic systems with uncertainties can be synchronized accurately by this controller. Illustrative examples of chaos synchronization for uncertain Duffing-Holmes system are presented to demonstrate the superiority of the obtained results.


93C10 Nonlinear systems in control theory
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
93C40 Adaptive control/observation systems
93B12 Variable structure systems
Full Text: DOI


[1] Nayfeh, A. H., Applied nonlinear dynamics (1995), Wiley: Wiley New York · Zbl 0925.70238
[2] Chen, G.; Dong, X., From chaos to order: methodologies, perspectives and applications (1998), World Scientific: World Scientific Singapore · Zbl 0908.93005
[3] Kapitaniak, T., Chaotic oscillations in mechanical systems (1991), Manchester University Press: Manchester University Press New York · Zbl 0786.58027
[4] Astakhov, V. V.; Anishchenko, V. S.; Kapitaniak, T.; Shabunin, A. V., Synchronization of chaotic oscillators by periodic parametric perturbations, Physica D, 109, 11-16 (1997) · Zbl 0925.58055
[5] Blazejczyk-Okolewska, B.; Brindley, J.; Czolczynski, K.; Kapitaniak, T., Antiphase synchronization of chaos by noncontinuous coupling: two impacting oscillators, Chaos, Solitons & Fractals, 12, 1823-1826 (2001) · Zbl 0994.37044
[6] Yang, X. S.; Duan, C. K.; Liao, X. X., A note on mathematical aspects of drive-response type synchronization, Chaos, Solitons & Fractals, 10, 1457-1462 (1999) · Zbl 0955.37020
[7] Wang, Y.; Guan, Z. H.; Wen, X., Adaptive synchronization for Chen chaotic system with fully unknown parameters, Chaos, Solitons & Fractals, 19, 899-903 (2004) · Zbl 1053.37528
[8] Chua, L. O.; Yang, T.; Zhong, G. Q.; Wu, C. W., Adaptive synchronization of Chua’s oscillators, Int. J. Bifurc. Chaos, 6, 1, 189-201 (1996)
[9] Liao, T. L., Adaptive synchronization of two Lorenz systems, Chaos, Solitons & Fractals, 9, 1555-1561 (1998) · Zbl 1047.37502
[10] Lian, K. Y.; Liu, P.; Chiang, T. S.; Chiu, C. S., Adaptive synchronization design for chaotic systems via a scalar driving signal, IEEE Trans. Circuits Syst. I, 49, 1, 17-27 (2002)
[11] Wu, C. W.; Yang, T.; Chua, L. O., On adaptive synchronization and control of nonlinear dynamical systems, Int. J. Bifurc. Chaos, 6, 455-471 (1996) · Zbl 0875.93182
[12] Fang, J. Q.; Hong, Y.; Chen, G., Switching manifold approach to chaos synchronization, Phys. Rev. E, 59, 2523-2526 (1999)
[13] Yin, X.; Ren, Y.; Shan, X., Synchronization of discrete spatiotemporal chaos by using variable structure control, Chaos, Solitons & Fractals, 14, 1077-1082 (2002) · Zbl 1038.37506
[14] Yu, X.; Song, Y., Chaos synchronization via controlling partial state of chaotic systems, Int. J. Bifurc. Chaos, 11, 6, 1737-1741 (2001)
[15] Wang, C.; Ge, S. S., Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos, Solitons & Fractals, 12, 199-206 (2001) · Zbl 1015.37052
[16] Lu, J.; Zhang, S., Controlling Chen’s chaotic attractor using backstepping design based on parameters identification, Phys. Lett. A, 286, 145-149 (2001)
[17] Suykens, J. A.K.; Curran, P. F.; Vandewalle, J., Robust nonlinear synchronization of chaotic Lur’e systems, IEEE Trans. Circuits Syst. I, 44, 10, 891-904 (1997)
[18] Slotine, J. E.; Li, W., Applied nonlinear control (1991), Prentice-Hall, Englewood Cliffs: Prentice-Hall, Englewood Cliffs New Jersey · Zbl 0753.93036
[19] Chen, C. L.; Lin, W. Y., Sliding mode control for non-linear systems with global invariance, Proc. Inst. Mech. Engrs., 211, 75-82 (1997)
[20] Utkin, V. I., Sliding modes in control optimization (1992), Springer-Verlag: Springer-Verlag Berlin · Zbl 0748.93044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.