×

Complex dimensions of self-similar fractal strings and Diophantine approximation. (English) Zbl 1061.11039

The authors study the equation \(m_1 r^s_1+\cdots+ m_d r^s_d\), where the \(r_i\)’s are given distinct positive reals and the \(m_i\)’s are given complex numbers. In the case where the \(r_i\)’s are not powers of same real number the authors show how to approximate this equation by polynomial equations of increasing degrees. They prove in particular that the solutions have a quasi-periodic structure. They also show how this question is related to complex dimensions of self-similar fractal strings [see the authors, Contemp. Math. 237, 87–105 (1999; Zbl 0945.11016) and Fractal geometry and number theory. Complex dimensions of fractal strings and zeros of zeta functions (Boston, MA, Birkhäuser) (2000; Zbl 0981.28005)].

MSC:

11J99 Diophantine approximation, transcendental number theory
28A80 Fractals
11M41 Other Dirichlet series and zeta functions
37C45 Dimension theory of smooth dynamical systems
11K60 Diophantine approximation in probabilistic number theory

References:

[1] Berger M., Differential Geometry. Manifolds, Curves and Surfaces (1988)
[2] Elkies, N. D. ”Rational Points Near Curves and Small Nonzero |x3–y2|via Lattice Reduction.”. Proceedings of ANTS–4. Edited by: Bosma, W. pp.33–63. Berlin: Springer–Verlag. [Elkies 00], Lecture Notes in Computer Science 1838
[3] Falconer K. J., Fractal Geometry. Mathematical Foundations and Applications. (1990)
[4] Feller W., An Introduction to Probability Theory and its Applications (1966) · Zbl 0138.10207
[5] Frantz M., ”Minkowski Measurability and Lacu– narity of Self–Similar Sets in R,” (2001)
[6] Frantz M., Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot (2004)
[7] Hardy G. H., An Introduction to the Theory of Numbers. (1960) · Zbl 0086.25803
[8] DOI: 10.1137/0218059 · Zbl 0692.10033 · doi:10.1137/0218059
[9] Ingham A. E., The Distribution of Prime Numbers. (1992) · Zbl 0715.11045
[10] DOI: 10.1007/BF02097233 · Zbl 0806.35130 · doi:10.1007/BF02097233
[11] DOI: 10.1137/0214016 · Zbl 0563.10025 · doi:10.1137/0214016
[12] DOI: 10.1007/BF02392732 · Zbl 0701.58021 · doi:10.1007/BF02392732
[13] Lalley S. P., Er– godic Theory, Symbolic Dynamics and Hyperbolic Spaces pp 223– (1991)
[14] Lapidus M. L., Ordinary and Partial Differential Equations pp 126– (1993)
[15] Lapidus M. L., J. London Math. Soc. (2) 52 pp 15– (1995)
[16] DOI: 10.1112/plms/s3-66.1.41 · Zbl 0739.34065 · doi:10.1112/plms/s3-66.1.41
[17] DOI: 10.1090/conm/237/1710790 · doi:10.1090/conm/237/1710790
[18] Lapidus M. L., Fractal Geometry and Number Theory (Complex dimensions of fractal strings and zeros of zeta functions) (2000) · Zbl 0981.28005
[19] DOI: 10.1090/conm/290/04577 · doi:10.1090/conm/290/04577
[20] Lapidus M. L., ”Complex Dimensions of SelfSimilar Fractal Strings and Diophantine Approximation.” (2001)
[21] DOI: 10.1007/BF01457454 · Zbl 0488.12001 · doi:10.1007/BF01457454
[22] Mandelbrot B. B., The Fractal Geometry of Nature. (1983) · Zbl 0925.28001
[23] DOI: 10.1007/BF02940581 · doi:10.1007/BF02940581
[24] DOI: 10.2307/2006982 · Zbl 0537.58038 · doi:10.2307/2006982
[25] Parry W., Astérisque pp 187– (1990)
[26] Rössner, C. and Schnorr, C. P. ”An Optimal, Stable Continued Fraction Algorithm for Arbitrary Dimension.”. Proceedings of IPCO V (Conference on Integer Programming and Combinatorial Optimization, Vancouver, June 3–5, 1996). pp.31–43. Berlin: Springer– Verlag. [Rössner and Schnorr], Lecture Notes in Computer Science 1084
[27] Schmidt W. M., Diophantine Approximation (1980)
[28] DOI: 10.1016/0022-1236(90)90009-A · Zbl 0693.28005 · doi:10.1016/0022-1236(90)90009-A
[29] DOI: 10.1512/iumj.1990.39.39038 · Zbl 0695.28003 · doi:10.1512/iumj.1990.39.39038
[30] van Frankenhuysen, M. 2003. [van Frankenhuysen 03], Available from World Wide Webhttp://www.math.rutgers.edu/machiel/programs/
[31] Watson G. N., A Treatise on the Theory of Bessel Functions, (1995)
[32] Whittaker E. T., A Course of Modem Analysis, (1996) · doi:10.1017/CBO9780511608759
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.